[发明专利]一种基于迁移学习的图像能见度检测方法有效
申请号: | 201810515767.6 | 申请日: | 2018-05-25 |
公开(公告)号: | CN108875794B | 公开(公告)日: | 2020-12-04 |
发明(设计)人: | 李骞;唐绍恩;马强;马烁 | 申请(专利权)人: | 中国人民解放军国防科技大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04 |
代理公司: | 江苏圣典律师事务所 32237 | 代理人: | 胡建华;于瀚文 |
地址: | 410005 湖*** | 国省代码: | 湖南;43 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于迁移学习的图像能见度检测方法,包括:能见度检测模型训练:对训练集图像区域划分,通过预训练的VGG‑16深度神经网络编码,提取各子区域图像特征,利用各子区域图像特征和能见度标注值训练支持向量回归机,得到能见度的回归模型。能见度检测模型测试:对测试图像区域划分,通过预训练的VGG‑16深度神经网络编码,提取各子区域图像特征,利用子区域图像特征和回归模型计算子区域能见度估计值,融合各子区域能见度估计值,得到整幅图像能见度检测值。 | ||
搜索关键词: | 一种 基于 迁移 学习 图像 能见度 检测 方法 | ||
【主权项】:
1.一种基于迁移学习的图像能见度检测方法,其特征在于,包括以下步骤:步骤1,训练能见度检测模型:输入训练集图像,对训练集中每幅图像进行子区域图像划分;通过预训练的VGG‑16深度神经网络编码,提取各子区域图像对应的N维特征向量;利用各子区域图像特征向量和能见度标注值训练支持向量回归机,得到能见度检测模型;步骤2,能见度检测模型测试:输入测试图像,对测试图像进行子区域图像划分;通过预训练的VGG‑16深度神经网络编码,提取各子区域图像对应的N维特征向量;将各子区域图像特征向量代入步骤1训练的能见度检测模型,经回归预测得到各子区域能见度估计值;融合各子区域能见度估计值,输出整幅图像能见度检测值。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国人民解放军国防科技大学,未经中国人民解放军国防科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810515767.6/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序