[发明专利]一种面向密集点云的噪声剔除方法有效

专利信息
申请号: 201810525579.1 申请日: 2018-05-28
公开(公告)号: CN108846809B 公开(公告)日: 2022-08-12
发明(设计)人: 沈月千;王锦国 申请(专利权)人: 河海大学
主分类号: G06T5/00 分类号: G06T5/00
代理公司: 南京纵横知识产权代理有限公司 32224 代理人: 许婉静
地址: 210000*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明实施例提出了一种面向密集点云的噪声剔除方法,涉及噪声处理技术领域,该方法包括:主成分分析拟合平面方程;计算点云中点到平面的距离及标准差;噪声点判断,得到处理后点集;建立K‑D树索引;输入k值,遍历点集,确定各点邻域;计算各点邻域内点的距离(点个数)的平均值及标准差;噪声点判断与剔除。本发明实施例所提供的一种面向密集点云的噪声剔除方法,能够高精度地剔除具有平面特征的点云噪声。
搜索关键词: 一种 面向 密集 噪声 剔除 方法
【主权项】:
1.一种面向密集点云的噪声剔除方法,其特征在于,所述方法包括:S1、采用地面激光雷达系统获取具有平面特征的对象表面的点云数据集{Pi|i=1,2,…n},其中,n所述点云数据集中点的数量,每个点的数据包括对象表面点的三维坐标和强度;S2、利用主成分分析算法计算所述点云数据集所在平面方程,得到平面法向量;S3、计算所述点云数据集中每个点各自到所述平面方程的距离di,其中,i=1,2,…,n;S4、依据每个点各自到所述平面方程的距离di,获得所述点云数据集的标准差σ;S5、对所述点云数据集进行噪音点判断,依据经典粗差剔除理论,选择两倍所述标准差σ为阀值对所述点云数据集中的噪声点进行剔除,将剩下的所有点作为保留点集Q(xj,yj,zj)j=1,2,…,m;S6、对所述保留点集建立K‑D树索引;S7、输入k值,遍历所述保留点集,确定所述保留点集中每个点的k‑近邻,并以所述每个点的k‑近邻生成邻域点集t(xl,yl,zl)l=1,2,…,k;S8、计算所述邻域点集中每个点与当前点的距离Mj及标准差σj,其中,j=1,2,…,m;S9、对所述保留点集进行噪音点判断,依据经典粗差剔除理论,选择选择两倍所述标准差σ为阀值对所述保留点集中的噪声点进行剔除,得到剔除噪声后的保留点集R(xu,yu,zu)u=1,2,…,f,其中,f为所述剔除噪声后的保留点集中点的个数;S10、若所述剔除噪声后的保留点集中还存在成簇的噪声,重新输入新的k值,并重复执行S7、S8及S9。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于河海大学,未经河海大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810525579.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top