[发明专利]一种用于图像识别的神经网络模型在审
申请号: | 201810526107.8 | 申请日: | 2018-05-29 |
公开(公告)号: | CN108875912A | 公开(公告)日: | 2018-11-23 |
发明(设计)人: | 梁琨;段珺珂;张翼英;杨巨成;王聪;侯琳;都宁 | 申请(专利权)人: | 天津科技大学 |
主分类号: | G06N3/04 | 分类号: | G06N3/04;G06N3/08 |
代理公司: | 天津盛理知识产权代理有限公司 12209 | 代理人: | 王利文 |
地址: | 300222 天津市河*** | 国省代码: | 天津;12 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种用于图像识别的神经网络模型,由多个神经元连接在一起构成多层网络,所述多层网络包括卷积层、池化层和全连接层,卷积层用于提取特征向量,池化层对特征向量进一步筛选,全连接层进行最后的分类,各层之间通过激活函数连接在一起,并通过训练算法不断改进网络参数。本发明设计合理,该神经网络模型通过卷积层提取特征向量,通过池化层对向量进一步筛选,通过全连接层进行最后的分类,通过激活函数用于建立各层之间的连接关系并通过训练算法不断改进网络参数,从而提高图像中目标的识别率,为网络模型的设计、训练算法的选择提供新思路,可广泛用于图像识别领域。 | ||
搜索关键词: | 神经网络模型 图像识别 训练算法 连接层 池化 卷积 向量 多层网络 激活函数 提取特征 网络参数 神经元 筛选 连接关系 特征向量 网络模型 选择提供 识别率 分类 改进 图像 | ||
【主权项】:
1.一种用于图像识别的神经网络模型,其特征在于:由多个神经元连接在一起构成多层网络,所述多层网络包括卷积层、池化层和全连接层,卷积层用于提取特征向量,池化层对特征向量进一步筛选,全连接层进行最后的分类,各层之间通过激活函数连接在一起,并通过训练算法不断改进网络参数。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津科技大学,未经天津科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810526107.8/,转载请声明来源钻瓜专利网。