[发明专利]基于历史分段序列搜索和时序稀疏化的风电功率预测方法有效

专利信息
申请号: 201810561013.4 申请日: 2018-06-04
公开(公告)号: CN108549962B 公开(公告)日: 2020-10-09
发明(设计)人: 叶林;赵永宁;王伟胜;刘纯;王铮 申请(专利权)人: 中国农业大学;中国电力科学研究院有限公司
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q50/06
代理公司: 北京卫平智业专利代理事务所(普通合伙) 11392 代理人: 谢建玲;郝亮
地址: 100193 *** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了基于历史分段序列搜索和时序稀疏化的风电功率预测方法,对风电功率历史数据进行归一化,根据功率时间序列波动特征和基本统计特性确定搜索的分段时间序列的窗口宽度最优值。以当前时刻最新的分段时间序列为基准,综合相关性指标和相似性距离指标,计算所有历史分段时间序列与当前时刻的分段时间序列的匹配度。按照从大到小的顺序对匹配度进行排序,按照平均匹配度聚合的原则确定最优历史分段序列个数。针对每个时刻的当前分段时间序列,确定其相应的最优历史分段序列个数和最优的平均历史分段序列个数。针对训练时间序列所有时刻,建立时序稀疏化的功率预测模型。采用乘子交替方向法对其求解,得到模型的参数,用于未来的功率预测。
搜索关键词: 基于 历史 分段 序列 搜索 时序 稀疏 电功率 预测 方法
【主权项】:
1.一种基于历史分段序列搜索和时序稀疏化的风电功率预测方法,其特征在于:包括以下步骤:A.对风电场的风电功率历史数据进行归一化,根据风电场的风电功率时间序列波动特征以及基本统计特性来确定搜索的分段时间序列的窗口宽度最优值;B.根据计算出的分段时间序列的窗口宽度最优值,以当前时刻最新的分段时间序列为基准,综合相关性指标和相似性欧式距离指标,计算所有历史分段时间序列与当前时刻的分段时间序列的匹配度;C.根据计算出的所有历史分段时间序列与当前时刻分段时间序列的匹配度,按照从大到小的顺序对匹配度进行排序,按照平均匹配度聚合的原则确定最优历史分段时间序列个数,针对用于训练的时间序列的每个时刻的当前时刻分段时间序列,确定其相应的最优历史分段时间序列个数,并得到平均最优历史分段时间序列个数及相应的最优历史分段时间序列;D.根据计算出的平均最优历史分段时间序列个数以及相应的最优历史分段时间序列,针对用于训练的时间序列的所有时刻,建立时序稀疏化的风电功率预测优化模型,采用乘子交替方向法对预测优化模型进行训练并求解,得到预测优化模型的最优参数,并用于未来的功率预测。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国农业大学;中国电力科学研究院有限公司,未经中国农业大学;中国电力科学研究院有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810561013.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top