[发明专利]基于独立分量分析的情感脑电信号的导联选择方法有效

专利信息
申请号: 201810565890.9 申请日: 2018-06-04
公开(公告)号: CN108937968B 公开(公告)日: 2021-11-19
发明(设计)人: 吕钊;李文超;朱泽鹏;张超;周蚌艳;郭晓静;张磊;吴小培 申请(专利权)人: 安徽大学
主分类号: A61B5/16 分类号: A61B5/16;A61B5/372
代理公司: 合肥市上嘉专利代理事务所(普通合伙) 34125 代理人: 李璐
地址: 230601 安徽省*** 国省代码: 安徽;34
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于独立分量分析的情感脑电信号的导联选择方法,使用多导联情感脑电信号并对其进行滤波处理,将滤波后的数据使用ICA分析,建立对应不同情感任务背景下的空域滤波器组,然后进行线性投影,获取全导联的情感信号的空域特征参数,然后使用导联选择的方法选择出受试者的最优导联集合。本发明获得了较高的识别正确率,实现了根据不同受试者自动选择情感相关独立分量,相对于提取全通道的独立分量,选取最优导联位置的独立分量不仅能够降低算法的时间复杂度,同时能更准确地描述情感相关独立源的真实情况,同时能够有效抑制与情感信号无关的分量及外部噪声的干扰。
搜索关键词: 基于 独立 分量 分析 情感 电信号 选择 方法
【主权项】:
1.一种基于独立分量分析的情感脑电信号的导联选择方法,包括以下步骤:S1:多导联情感信号的预处理:将实验室采集积极、中性、消极三种情感状态下的脑电信号进行预处理;S2:全导联ICA空域滤波器组设计:取单次实验数据yi(i=1,…,N)进行ICA分析,并根据独立分量在采集电极上的映射模式,自动选择相关独立分量和对应的ICA滤波器,建立对应不同情感任务背景下的ICA空域滤波器组{Di1,…,Din}(i=1,…,N)(n≥3);使用ICA空域滤波器组{Di1,…,Din}对原始导联情感脑电信号进行线性投影,以生成对应情感任务背景下的情感信号空域特征参数;S3:情感模型的训练和识别:将步骤S2生成的对应不同情感任务背景下的情感信号空域特征参数进行SVD分解降维,然后送入支持向量机中进行训练和识别;重复步骤S2和S3,最终得到不同ICA滤波器组{Di1,…,Din}的识别正确率;S4:最优通道集合的选择:S4.1:选择最高识别率所对应的ICA滤波器组{D1,…,Dn}作为最优空域滤波器,对原始导联情感脑电信号进行线性投影,以生成对应情感任务背景下的情感信号空域特征参数;S4.2:使用排一法选取(n‑1)个滤波器投影后的特征参数,使用SVD进行特征降维,带入步骤S3中进行情感模型的训练和识别,将n个识别结果记录在矩阵ChanAc中,根据ChanAc计算情感相关系数EmoCoeff;S4.3:测试导联集合的特征生成:对步骤S4.2中计算的情感相关系数EmoCoeff进行升序排序,并将排序后的下标记录在CS中,依次在CS中取前m个下标对应的导联组成导联集合csm(m=2,...,n),根据独立分量在采集电极上的映射模式,自动选择与csm中包括的导联的情感相关独立分量和对应的ICA滤波器,建立对应不同情感任务背景下的ICA空域滤波器组对原始导联情感脑电信号进行线性投影,以生成对应任务背景下的情感信号空域特征参数。S4.4:选择最优导联集合:使用S4.3中生成的空域特征参数进行情感模型的训练和识别,最后使用最优滤波器所得的识别率为对应导联集合csm的测试结果,对(n‑1)个cs的测试结果进行排序,选择识别率最高的导联集合对应的csm作为最优导联集合。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于安徽大学,未经安徽大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810565890.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top