[发明专利]一种采用深度Q神经网络调参的LSTM风电负荷预测方法在审

专利信息
申请号: 201810575699.2 申请日: 2018-06-06
公开(公告)号: CN108932671A 公开(公告)日: 2018-12-04
发明(设计)人: 赵坤;张挺 申请(专利权)人: 上海电力学院
主分类号: G06Q50/06 分类号: G06Q50/06;G06Q10/04;G06N3/08
代理公司: 上海科盛知识产权代理有限公司 31225 代理人: 叶敏华
地址: 200090 *** 国省代码: 上海;31
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种采用深度Q神经网络调参的LSTM风电负荷预测方法,该方法包括以下步骤:1)采集电力系统环境的原始数据,选取训练集及预测集;2)采用LSTM作为预测模型,利用DQN调节预测模型中的超参数,利用DQN调节预测模型中的超参数具体包括环境参数调节、状态调整、动作选择、调整学习率的强化学习奖励;3)将训练集代入调节参数后的预测模型,利用经验回收方法,将训练结果反馈至DQN中进行参数优化,获取最优LSTM预测模型;4)利用最优LSTM预测模型进行风电负荷预测。与现有技术相比,本发明无需不同的地域时需要专业人才去调节,可大大提高预测效率。
搜索关键词: 预测模型 负荷预测 风电 神经网络 训练集 采集电力系统 参数优化 动作选择 环境参数 强化学习 训练结果 原始数据 状态调整 预测集 反馈 回收 地域 预测 奖励 学习
【主权项】:
1.一种采用深度Q神经网络调参的LSTM风电负荷预测方法,其特征在于,该方法包括以下步骤:1)采集电力系统环境的原始数据,选取训练集及预测集;2)采用LSTM作为预测模型,利用DQN调节预测模型中的超参数;3)将训练集代入调节参数后的预测模型,将训练结果反馈至DQN中进行参数优化,获取最优LSTM预测模型;4)利用最优LSTM预测模型进行风电负荷预测。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海电力学院,未经上海电力学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810575699.2/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top