[发明专利]面向大规模高维序列数据的交互特征并行选择方法有效

专利信息
申请号: 201810575946.9 申请日: 2018-06-06
公开(公告)号: CN108897990B 公开(公告)日: 2021-10-29
发明(设计)人: 赵宇海;印莹;郭文鹏;王国仁;祁宏伟 申请(专利权)人: 东北大学
主分类号: G16B20/20 分类号: G16B20/20;G16B40/00;G06N3/00;G06K9/46
代理公司: 沈阳东大知识产权代理有限公司 21109 代理人: 胡晓男
地址: 110819 辽宁*** 国省代码: 辽宁;21
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供一种面向大规模高维序列数据的交互特征并行选择方法,包括:对原始高维SNP数据进行编码;通过基于图论的块过滤,保留与目标类相关的编码后的SNP数据;将与目标类相关的SNP数据执行细粒度的特征过滤;以γ为粒度划分特征过滤后的序列数据集为若干块,并基于极大等位公共子序列MACS得到特征候选区域;对候选区域对应的数据集基于MapReduce进行特征区域的多样性选择,得到代表性特征区域;对代表性特征区域采用置换搜索的并行蚁群算法进行交互特征选择,得到显著性特征子集集合,即显著SNP位点集合。本发明为解决在大规模序列数据中进行交互特征选择提出一个全新的框架,使得特征选择更加高效、功能更为强大。
搜索关键词: 面向 大规模 序列 数据 交互 特征 并行 选择 方法
【主权项】:
1.面向大规模高维序列数据的交互特征并行选择方法,其特征在于,包括:对原始高维序列数据进行编码;通过基于图论的块过滤,保留与目标类相关的序列数据;将与目标类相关的序列数据执行细粒度的特征过滤;划分特征过滤后的序列数据集为若干块,并基于极大等位公共子序列MACS得到特征候选区域;对候选区域对应的数据集基于MapReduce进行特征区域的多样性选择,得到代表性特征区域;对代表性特征区域采用置换搜索的并行蚁群算法进行交互特征选择。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东北大学,未经东北大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810575946.9/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top