[发明专利]一种基于强化贝叶斯分类的社交行为检测方法有效
申请号: | 201810578405.1 | 申请日: | 2018-06-07 |
公开(公告)号: | CN108804651B | 公开(公告)日: | 2022-08-19 |
发明(设计)人: | 薛丽;陈志;张怡婷;岳文静;金广华;郑瑶嘉;张姝彦 | 申请(专利权)人: | 南京邮电大学 |
主分类号: | G06F16/35 | 分类号: | G06F16/35;G06F40/284 |
代理公司: | 南京瑞弘专利商标事务所(普通合伙) 32249 | 代理人: | 沈廉 |
地址: | 210003 *** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: |
本发明公开了一种基于强化贝叶斯分类的社交行为检测方法具体为:步骤1)收集中文社交网站言论的文本训练样本集,包括攻击性言论文本及赞赏性言论文本等类别文本,建立社交网站言论的文本训练样本集;步骤2)根据停用词词库对中文社交网站言论的文本训练样本集进行中文分词得到某个中文训练集的词序列v |
||
搜索关键词: | 一种 基于 强化 贝叶斯 分类 社交 行为 检测 方法 | ||
【主权项】:
1.一种基于强化贝叶斯分类的社交行为检测方法,其特征在于,该方法主要包括以下步骤:步骤1)收集中文社交网站言论的文本训练样本集,包括攻击性言论文本及赞赏性言论文本等类别文本,建立社交网站言论的文本训练样本集;步骤2)根据停用词词库对中文社交网站言论的文本训练样本集进行中文分词得到某个中文训练集的词序列vi,i∈{1,2,3,...f},f为训练样本总数;步骤3)通过TF‑IDF中文分词算法对中文社交网站言论的文本训练样本集中不同行为类别文本的进行特征提取;步骤4)输入特征词序列,使用贝叶斯模型进行学习识别;步骤5)通过强化贝叶斯分类器对分类器进行强化。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京邮电大学,未经南京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810578405.1/,转载请声明来源钻瓜专利网。