[发明专利]基于深度学习的路面遗撒识别方法在审

专利信息
申请号: 201810592958.2 申请日: 2018-06-11
公开(公告)号: CN109033947A 公开(公告)日: 2018-12-18
发明(设计)人: 刘佳辰;魏旭;李峰;叶紫欣;李建康;汤子湘;周思齐;王瑶;伍翌嘉 申请(专利权)人: 北京航空航天大学
主分类号: G06K9/00 分类号: G06K9/00;G06K9/62;G06N3/04;G06N3/08
代理公司: 北京航智知识产权代理事务所(普通合伙) 11668 代理人: 程连贞;陈磊
地址: 100191*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于深度学习的路面遗撒识别方法,包括以下步骤:步骤一:采集路面遗撒数据,构造自制数据集;步骤二:通过减小卷积核大小和增加不同特征层之间的连接,建立改进的YOLO模型;步骤三:使用步骤一中构造的自制数据集训练步骤二中建立的改进的YOLO模型;步骤四:将经过训练的改进YOLO模型输入待测图片,计算求得目标的类别概率和包围框,以识别路面遗撒。本发明的路面遗撒识别方法,使用更适合于道路巡检的优化后的YOLO模型,进行路面遗撒识别,达到了实时识别,95%以上准确率的良好效果。
搜索关键词: 数据集 自制 改进 道路巡检 类别概率 模型输入 实时识别 训练步骤 包围框 卷积核 特征层 准确率 减小 采集 学习 优化 图片
【主权项】:
1.一种基于深度学习的路面遗撒识别方法,其特征在于,包括以下步骤:步骤一:采集路面遗撒数据,构造自制数据集;步骤二:通过减小卷积核大小和增加不同特征层之间的连接,建立改进的YOLO模型;步骤三:使用步骤一中构造的自制数据集训练步骤二中建立的改进的YOLO模型;步骤四:将经过训练的改进YOLO模型输入待测图片,计算求得目标的类别概率和包围框,以识别路面遗撒。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京航空航天大学,未经北京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810592958.2/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top