[发明专利]一种基于深度学习的超快冷温度控制方法在审

专利信息
申请号: 201810603507.4 申请日: 2018-06-06
公开(公告)号: CN109033505A 公开(公告)日: 2018-12-18
发明(设计)人: 张田;田勇;王丙兴;张子豪;李家栋;李勇;王昭东;王国栋 申请(专利权)人: 东北大学
主分类号: G06F17/50 分类号: G06F17/50;G06N3/04
代理公司: 大连理工大学专利中心 21200 代理人: 陈玲玉;梅洪玉
地址: 110819 辽宁*** 国省代码: 辽宁;21
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及轧钢技术领域,公开了一种基于深度学习的超快冷温度控制方法,可提高温度控制精度与系统稳定性。本方法综合收集众多实际冷却信息,经过主成分分析法选出最主要的9个影响因素,以这9个参数为输入层单元,冷却时间为主要输出层单元,构建深度神经网络框架。深度学习通过深层次挖掘其间联系特征,准确预报待冷却钢板的冷却时间,最终实现温度模型的精确控制。本发明对现场冷却工艺数据充分挖掘,保证首块冷却命中率。模型充分考虑各冷却影响因素,使得轧后控冷模型的准确性和鲁棒性更强,能够有效的减少系统上线调试时间,降低学习成本,缩短产品研发周期。上线实测后,在控冷指标为±20℃条件下命中率可达96.3%,比传统模型命中率提高约4%。
搜索关键词: 冷却 命中率 影响因素 控冷 快冷 上线 学习 主成分分析法 输出层单元 输入层单元 系统稳定性 产品研发 传统模型 减少系统 冷却钢板 冷却工艺 冷却信息 神经网络 温度模型 准确预报 挖掘 鲁棒性 构建 轧钢 实测 调试 保证
【主权项】:
1.一种基于深度学习的轧后冷却温度控制方法,其特征在于,包括如下步骤:(1)根据现场或实验室试验条件影响温度控制的因素,初步采集20个以上影响因子;采用主成分分析法对数据进行预处理,根据权重大小,优选出前9个权重较大的影响因子作为输入层单元;输出层单元根据工艺需求设为钢板冷却时间,由此求出冷却规程;(2)建立深度神经网络框架,确定网络结构为隐含层3‑10层,每层隐含层含有50‑300个隐层单元,每层之间所用激活函数为Relu激活函数;优化算法为Adam算法、学习率衰减;采用L2正则化与Dropout正则化并用,同时对各个超参数进行调优;深度神经网络学习模型建立后,基于现场大数据进行训练,达到可准确预测冷却时间,满足投入生产的条件;(3)通过学习历史的生产数据,深度神经网络学习模型学会了各个影响因子与冷却时间之间的关系特征;当一块新钢板待冷却时,通过其PDI数据以及现场其他影响因素值可直接预报出冷却时间t0;(4)预计算得出冷却时间t0后,再由模型计算出其冷却规程;(5)该钢板冷却后,以偏差±20℃为标准,对其冷却结果进行分析,对未命中的情况,通过修正增强算法算出其正确的冷却时间,并替换错误训练集进行重新训练;对成功命中的情况进行数据积累,并定期对其进行训练,实现训练集定时扩充的功能。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东北大学,未经东北大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810603507.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top