[发明专利]一种基于小数据样本学习的兴趣特征识别检测方法有效
申请号: | 201810604352.6 | 申请日: | 2018-06-13 |
公开(公告)号: | CN108734182B | 公开(公告)日: | 2022-04-05 |
发明(设计)人: | 李楠楠;王胜法;栗志扬;蒋波 | 申请(专利权)人: | 大连海事大学 |
主分类号: | G06V10/40 | 分类号: | G06V10/40;G06V10/776;G06K9/62 |
代理公司: | 大连东方专利代理有限责任公司 21212 | 代理人: | 李洪福 |
地址: | 116026 辽*** | 国省代码: | 辽宁;21 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于小数据样本学习的兴趣特征识别检测方法,包括:S1‑1建立特征空间:在三维模型上进行兴趣特征的定义与描述;S1‑2建立度量空间:利用自适应偏微分方程引导的扩散方法和子模优化方法进行小数据样本驱动的兴趣特征分析和提取;S1‑3利用S1‑2的结果进行三维模型上的兴趣特征识别和检测。通过设计灵活方便的兴趣特征定义方式,拓展了传统三维模型上特征的形式,为模型的局部和全局分析与描述建立了纽带。通过将兴趣特征检测转化为全局图上的扩散,减小了特征分析所需的成本与代价,可推动相关的三维模型处理与应用。 | ||
搜索关键词: | 一种 基于 数据 样本 学习 兴趣 特征 识别 检测 方法 | ||
【主权项】:
1.一种基于小数据样本学习的兴趣特征识别检测方法,其特征在于,包括:S1‑1建立特征空间:在三维模型上进行兴趣特征的定义与描述;S1‑2建立度量空间:利用自适应偏微分方程引导的扩散方法和子模优化方法进行小数据样本驱动的兴趣特征分析和提取;S1‑3利用S1‑2的结果进行三维模型上的兴趣特征识别和检测。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于大连海事大学,未经大连海事大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810604352.6/,转载请声明来源钻瓜专利网。
- 上一篇:一种加速在线生成核反应堆堆芯特征线的方法
- 下一篇:检查方法和检查设备
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置