[发明专利]一种基于卷积神经网络的显著物体检测方法有效
申请号: | 201810634717.X | 申请日: | 2018-06-20 |
公开(公告)号: | CN109165660B | 公开(公告)日: | 2021-11-09 |
发明(设计)人: | 陈舒涵;谭秀莉;王奔;胡学龙 | 申请(专利权)人: | 扬州大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 南京理工大学专利中心 32203 | 代理人: | 孟睿 |
地址: | 225009 *** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提出了一种基于卷积神经网络的显著物体检测方法,本发明以任意的静态图像为输入,输出该图像中显著的物体。本发明首先在卷积神经网络的最深层提取低分辨率的全局显著性图,然后设计了两个网络结构,一个是残差特征学习网络,用于提取多尺度的残差特征,在较少的模型参数下逐步提升全局显著性图的分辨率;另一个是反向注意力机制网络,通过反向权重图引导上述残差特征学习,进一步提升显著性图的分辨率。本发明检测精度高,网络模型小,适用于移动端等嵌入式设备。 | ||
搜索关键词: | 一种 基于 卷积 神经网络 显著 物体 检测 方法 | ||
【主权项】:
1.一种基于卷积神经网络的显著物体检测方法,其特征在于,具体步骤为:步骤1、构建基于卷积神经网络的显著物体检测模型,具体为:在VGG‑16的基础上,增加全局显著性估计模块以及残差特征学习模型,其中,所述全局显著性估计模块用于确定待检测图像的全局显著性概率图S6,且该全局显著性概率图的分辨率为输入图像的1/32;所述残差特征学习模型用于获取分辨率逐渐增加的显著性概率图;步骤2、模型训练,将待检测图像输入至构建的网络模型,得到不同分辨率的显著性概率图S6‑S1,将显著性概率图S6‑S2上采样至原图像大小得到显著性概率图使用交叉熵损失函数计算各个显著性概率图和真实标注图之间的误差,并将误差进行反向传递以更新整个网络模型参数;步骤3、模型检测,将待检测图像直接输入到更新后的网络模型中预测其对应的显著性概率图,并将预测的显著性概率图S1通过一个sigmoid层归一化到[0,1]后作为最终输出的显著性图。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于扬州大学,未经扬州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810634717.X/,转载请声明来源钻瓜专利网。