[发明专利]基于特征分化的交易欺诈行为深度检测方法有效
申请号: | 201810641664.4 | 申请日: | 2018-06-20 |
公开(公告)号: | CN109034194B | 公开(公告)日: | 2022-03-04 |
发明(设计)人: | 蒋昌俊;章昭辉;王鹏伟;汪立智;张晓波;周欣欣 | 申请(专利权)人: | 东华大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06Q20/40 |
代理公司: | 上海申汇专利代理有限公司 31001 | 代理人: | 翁若莹;柏子雵 |
地址: | 200050 上*** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于特征分化的交易欺诈行为深度检测方法,其特征在于,提出了基于交易时间的分化特征生成方法和带有离群样本检测的欺诈交易检测方法。本发明提出的网络交易欺诈检测方法,可以有效检测网络交易中的欺诈行为,本发明提供的方法从实用性角度出发,通过分化特征生成方法和带有离群样本检测的欺诈交易检测方法,建立了网络交易欺诈检测系统,为解决欺诈交易检测提供了技术支持。 | ||
搜索关键词: | 基于 特征 分化 交易 欺诈 行为 深度 检测 方法 | ||
【主权项】:
1.一种基于特征分化的交易欺诈行为深度检测方法,其特征在于,包括以下步骤:步骤1、利用历史交易数据建立训练集,构建欺诈检测模型;步骤2、利用分类器f(x)对训练集中的样本进行分类,对不同类别的样本分别采样;步骤3、将采样得到的样本定义为训练交易数据,在原有交易属性特征基础上,采用基于交易时间的分化特征生成方法,衍生训练交易数据的分化特征,分化正常交易和欺诈交易之间的差异,生成输入特征集合;步骤4、更新欺诈检测模型;步骤5、将输入特征集合输入到欺诈检测模型中进行模型参数的训练,确定构建模型的结构和参数,在验证数据集上评估当前模型的检测性能,相比上一次评估,如果当前性能提升大于设定阈值,则对于正确预测的样本,改变其权重使得在下一次训练有更低的概率被抽取,对于错误预测的样本,改变其权重使得下一次训练由更高的概率被抽取,根据更新后的权重更新分类器f(x)后返回步骤2,如果当前性能提升小于设定阈值,则欺诈检测模型停止更新,得到可以精准检测网络欺诈交易的模型;步骤6、采用步骤3所述的分化特征生成方法,衍生实时输入的交易数据的分化特征,生成实时输入特征集合,将实时输入特征集合输入到步骤5生成的模型,判断实时输入的交易数据对应的交易是否为欺诈交易。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东华大学,未经东华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810641664.4/,转载请声明来源钻瓜专利网。