[发明专利]针对运动模糊图像复原的模糊核计算方法有效

专利信息
申请号: 201810649846.6 申请日: 2018-06-21
公开(公告)号: CN109003234B 公开(公告)日: 2019-11-12
发明(设计)人: 陈熙源;柳笛;方文辉;刘晓 申请(专利权)人: 东南大学
主分类号: G06T5/00 分类号: G06T5/00;G06N3/08
代理公司: 南京苏高专利商标事务所(普通合伙) 32204 代理人: 柏尚春
地址: 211189 江*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种针对运动模糊图像复原的模糊核计算方法,本发明是基于稀疏特性、超拉普拉斯先验和集成BP神经网络的模糊核参数估计算法,首先,在图像灰度梯度符合超拉普拉斯分布的约束条件下,通过分析模糊图像的稀疏表示系数确定模糊图像的模糊角度;然后,将模糊图像傅里叶变换后获取的傅里叶系数幅值和作为输入,通过训练基于Bagging方法的集成BP神经网络模型,完成对模糊长度的估计;最后,通过一步已知模糊核的去模糊算法得到去模糊图像。本发明估计模糊核参数准确,运算速度快,耗时短,去模糊效果好,通过本发明恢复运动模糊图像,可以使恢复出的图像边缘更加清晰,振铃效应更少。
搜索关键词: 模糊图像 模糊核 运动模糊图像 复原 参数估计算法 拉普拉斯分布 图像灰度梯度 傅里叶变换 傅里叶系数 运算速度快 模糊 先验 恢复运动 模糊算法 模糊效果 图像边缘 稀疏表示 稀疏特性 系数确定 约束条件 振铃效应 耗时 清晰 恢复 分析
【主权项】:
1.一种针对运动模糊图像复原的模糊核计算方法,其特征在于,包括以下步骤:(1)建立图像退化模型,模型处理过程为:g(x,y)=h(x,y)*I(x,y)+n(x,y)                    (式1)其中,*表示卷积操作,n(x,y)表示加性噪声,g(x,y)表示模糊图像,I(x,y)表示清晰图像,h(x,y)表示的是由模糊角度和模糊长度两个参数确定的模糊核;(2)根据模糊核的模糊角度参数和模糊图像稀疏表达系数之间的拟凸关系,利用图像灰度梯度符合超拉普拉斯分布的约束条件构建出如式2所示的约束优化问题,通过求解该约束优化问题得到模糊角度的估计值,其中,s.t.是“Subject to”的缩写,表示“在……约束条件之下”,表示的是模糊角度,表示估计出的清晰图像,D是在清晰图像上学习得到的超完备字典,表示在图像中抽取第i个小块并列化为一个向量,αi表示第i个图像小块的稀疏表达系数,i取值为i=1,2,...,λ是控制似然项的权重因子,|I*fj|α表示作用于应用于I的一组滤波器f1……fj的输出值,为了方便计算α取值为并使用两个一阶导数滤波器f1=[1,‑1]和f2=[1,‑1]T进行计算,hθ是由模糊角度θ确定的模糊核;(3)根据步骤(2)估计出的模糊角度值,将模糊图像的模糊核方向旋转至水平方向;(4)使用将模糊核方向旋转至水平后的模糊图像的傅立叶系数幅值和作为输入,采用基于Bagging方法的集成BP神经网络预测模型预测特定模糊图像的模糊长度;(5)根据步骤(2)得出的模糊角度和步骤(4)得出的模糊长度L,代入公式计算出模糊核,模糊核计算公式为:
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810649846.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top