[发明专利]基于逆向强化学习的驾驶员行为建模方法有效
申请号: | 201810660203.1 | 申请日: | 2018-06-25 |
公开(公告)号: | CN108819948B | 公开(公告)日: | 2020-05-19 |
发明(设计)人: | 邹启杰;李昊宇;裴炳南 | 申请(专利权)人: | 大连大学 |
主分类号: | B60W40/09 | 分类号: | B60W40/09;B60W50/00 |
代理公司: | 大连智高专利事务所(特殊普通合伙) 21235 | 代理人: | 盖小静 |
地址: | 116622 辽宁省*** | 国省代码: | 辽宁;21 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于逆向强化学习的驾驶员行为建模方法,具体包括如下步骤:S1,构建驾驶环境特征提取器,用于提取构建回报函数的特征;S2,构建回报函数生成器,用于驾驶策略的获取;S3,构建驾驶策略获取器,完成驾驶策略的构建;S4,判断获取器构建的最优驾驶策略,其是否满足评判标准;若不满足,则重复执行步骤S2重新构建回报函数,重复构建最优驾驶策略,反复迭代,直到满足评判标准;最终获得描述真实驾驶示范的驾驶策略。本申请可以对于新的状态场景进行适用,来获得其对应动作,大大提高了建立的驾驶员行为模型的泛化能力,适用场景更广,鲁棒性更强。 | ||
搜索关键词: | 基于 逆向 强化 学习 驾驶员 行为 建模 方法 | ||
【主权项】:
1.一种基于逆向强化学习的驾驶员行为建模方法,其特征在于,具体包括如下步骤:S1,构建驾驶环境特征提取器,用于提取构建回报函数的特征;S2,构建回报函数生成器,用于驾驶策略的获取;S3,构建驾驶策略获取器,完成驾驶策略的构建;S4,判断获取器构建的最优驾驶策略,其是否满足评判标准;若不满足,则重复执行步骤S2重新构建回报函数,重复构建最优驾驶策略,反复迭代,直到满足评判标准;最终获得描述真实驾驶示范的驾驶策略。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于大连大学,未经大连大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810660203.1/,转载请声明来源钻瓜专利网。