[发明专利]一种挖掘能见度多维时空数据之间格兰杰因果关系的方法有效
申请号: | 201810665640.2 | 申请日: | 2018-06-26 |
公开(公告)号: | CN109033178B | 公开(公告)日: | 2021-07-30 |
发明(设计)人: | 刘博;贺玺 | 申请(专利权)人: | 北京工业大学 |
主分类号: | G06F16/2458 | 分类号: | G06F16/2458 |
代理公司: | 北京思海天达知识产权代理有限公司 11203 | 代理人: | 沈波 |
地址: | 100124 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种挖掘能见度多维时空数据之间格兰杰因果关系的方法,属于数据挖掘技术领域。首先选用部分样本数据利用格兰杰因果分析提取其中与能见度有因果关系的备选特征,然后把全部数据按照北京市不同行政区进行分类,利用Fc因果测量因子来确定不同区域之间的影响关系强弱,最后利用一种改进的时空Granger Lasso算法来训练因果关系模型,这样就得出不同区域、不同影响因子和能见度之间的格兰杰因果分数,实现了定性和定量的影响因素分析。 | ||
搜索关键词: | 一种 挖掘 能见度 多维 时空 数据 之间 格兰杰 因果关系 方法 | ||
【主权项】:
1.一种挖掘能见度多维时空数据之间格兰杰因果关系的方法,利用优化的时空Granger Lasso算法来训练能见度的因果关系模型,这种方法基于格兰杰算法进行了扩展,公式如下:
其中Y代表在sy区域t时刻特征c的值,同理X代表在sx区域t时刻特征c的值;S代表区域,t代表时刻,c代表特征,x和y表示不同的两个区域,i和j表示不同的特征类型,k代表对应的时间滞后,Li和Lj则代表不同的时间滞后长度,a={ak}、b={bk}对应两个过程相应的权重,ξt代表具有零均值和方差σ2的不相关随机变量;通过该式可以判断不同区域之间的特征是否有格兰杰因果关系;通过基于上述公式实现的优化之后的Granger Lasso算法进行训练,得到不同空间、不同时间滞后和不同特征之间的格兰杰因果分数,从而定性、定量地分析各种影响因素与大气能见度的格兰杰因果关系;其特征在于:方法包括以下步骤:步骤1、获取大气能见度领域的多维时空序列数据集,并对多维时空序列数据集中的数据进行预处理,通过利用众数填补缺失值和替换离群点数据,可以得到平滑的时间空间序列数据,为后续步骤做准备;步骤2、针对步骤1中得到数据,对于不同的能见度影响因子,取部分数据进行格兰杰因果关系分析便可得到其中的格兰杰因果关系,然后剔除掉与能见度没有格兰杰因果关系的影响特征,得到与能见度有格兰杰因果关系的各个特征的时间空间序列数据;步骤3、将步骤2得到的数据按照不同的区域来划分,通过Fc因果测量因子来确定不同区域之间的影响关系强弱,选出对每个区域影响最大的其他三个区域;步骤4、针对每个区域和对该区域影响最大的其他三个区域,利用优化的时空Granger Lasso算法来训练能见度的因果关系模型,最终得到不同区域、不同影响因子和能见度之间的格兰杰因果分数,最后将得到的结果汇总并可视化。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京工业大学,未经北京工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810665640.2/,转载请声明来源钻瓜专利网。