[发明专利]一种风电齿轮箱的故障诊断方法有效
申请号: | 201810667883.X | 申请日: | 2018-06-26 |
公开(公告)号: | CN109029975B | 公开(公告)日: | 2020-08-04 |
发明(设计)人: | 程加堂;段志梅;何静松;熊燕 | 申请(专利权)人: | 红河学院 |
主分类号: | G01M13/021 | 分类号: | G01M13/021;G06N3/02 |
代理公司: | 西安弘理专利事务所 61214 | 代理人: | 罗笛 |
地址: | 661199 云南*** | 国省代码: | 云南;53 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开的风电齿轮箱的故障诊断方法,首先,提取风电齿轮箱的振动加速度信号,分解后建立故障集;其次,采用一种面向收缩‑扩张系数的随机调整方案来增强量子粒子群算法的鲁棒性;再次,为了进一步提高算法跳出局部最优的概率,一种重启动策略也被引入到量子粒子群算法中;最后,采用改进的量子粒子群与BP神经网络相结合的方法来建立风电齿轮箱的故障诊断模型。与BP神经网络、粒子群以及量子粒子群优化BP网络的方案相比,本发明的故障诊断方法具有较高的诊断精度,降低了恶劣事故发生的几率。 | ||
搜索关键词: | 一种 齿轮箱 故障诊断 方法 | ||
【主权项】:
1.一种风电齿轮箱的故障诊断方法,其特征在于,具体按照如下步骤实施:步骤1、采集齿轮表面的振动加速度信号,并经小波技术分解处理后,得到故障识别的特征向量,将该特征向量随机分为两组,分别作为BP神经网络的训练集和测试集;对齿轮箱的故障类型进行编码,并作为输出样本;步骤2、确定BP神经网络的隐含层神经元个数、训练函数以及输入层至输出层的传递函数,建立基于BP神经网络的故障诊断模型;步骤3、采用改进的量子粒子群算法对BP神经网络的故障诊断模型的参数进行寻优,获得最优的权阈值参数,得到优化BP神经网络;步骤4、利用训练集对优化BP神经网络进行训练,得到改进量子粒子群优化BP神经网络模型;步骤5、采用改进量子粒子群优化BP神经网络模型对测试集进行预测,输出风电齿轮箱故障的诊断结果,并将该诊断结果与步骤1得到的输出样本进行比较,判断出风电齿轮箱的故障类型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于红河学院,未经红河学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810667883.X/,转载请声明来源钻瓜专利网。