[发明专利]一种基于深度级联卷积神经网络的快速人脸检测方法有效
申请号: | 201810668102.9 | 申请日: | 2018-06-26 |
公开(公告)号: | CN109190442B | 公开(公告)日: | 2021-07-06 |
发明(设计)人: | 杨波 | 申请(专利权)人: | 杭州雄迈集成电路技术股份有限公司 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06N3/04;G06N3/08 |
代理公司: | 杭州裕阳联合专利代理有限公司 33289 | 代理人: | 姚宇吉 |
地址: | 311400 浙江省杭州市富阳*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开的是一种基于深度级联卷积神经网络的快速人脸检测方法,包括创建人脸数据集、组建深度级联卷积神经网络、测试网络模型,使用正负样本组成训练集和验证集,以训练所述深度级联卷积神经网络进行深度学习,在所述深度学习过程中加入性别分类辅助任务,同时采取微调训练;同时对训练方法和网络结构进行优化;本发明基于深度级联卷积神经网络,通过对卷积层的优化改进增加网络深度,并且改进级联网络的级联方式,从而大大降低了网络的计算量,提高了检测速度,同时引入辅助任务训练和微调训练阶段的在线难负样本挖掘方法,提高了网络的分类准确率,降低了误检率,能保证该方法在实际应用中的检测速度和准确率。 | ||
搜索关键词: | 一种 基于 深度 级联 卷积 神经网络 快速 检测 方法 | ||
【主权项】:
1.一种基于深度级联卷积神经网络的快速人脸检测方法,包括创建人脸数据集、组建深度级联卷积神经网络、测试网络模型,其特征在于:所述人脸数据集对人脸图像进行标注,使用多级金字塔缩放方法对人脸图像进行窗口滑动,将窗口与人脸矩形框的图像交并比IOU大于等于0.7的窗口图像设置为正样本,图像交并比IOU小于0.3的窗口图像设置为负样本,使用正负样本组成训练集和验证集,以训练所述深度级联卷积神经网络进行深度学习,在所述深度学习过程中加入性别分类辅助任务,同时采取微调训练;所述深度级联卷积神经网络包括至少三级级联卷积网络,第一级网络特征层和第二级网络特征层进行级联,第三级网络为单独网络并不和第二级网络级联,所述每一级网络都为全卷积网络包括多个卷积层和池化层,所述卷积层包括两个1x1的卷积层和一个3x3的卷积层。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州雄迈集成电路技术股份有限公司,未经杭州雄迈集成电路技术股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810668102.9/,转载请声明来源钻瓜专利网。