[发明专利]一种基于TF-IDF和CNN启发式短文本特征提取与分类方法有效

专利信息
申请号: 201810685215.X 申请日: 2018-06-27
公开(公告)号: CN109947864B 公开(公告)日: 2023-08-22
发明(设计)人: 冯万利;范家宽;朱全银;周泓;王奔;朱勐 申请(专利权)人: 淮阴工学院
主分类号: G06F16/28 分类号: G06F16/28;G06F40/284;G06N3/0464
代理公司: 南京苏高专利商标事务所(普通合伙) 32204 代理人: 梁耀文
地址: 223005 江苏省*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 专利公开发明了一种基于TF‑IDF和CNN启发式短文本特征提取与分类方法,首先对短文本集用结巴分词工具实现中文的文本分词,然后去除文本噪声词,得到文本数据集UNION,其次使用TF‑IDF特征选择方法处理文本数据集UNION,得出选择后的文本特征值VALUE1,将VALUE1导入到卷积神经网络模型,集成标签并且生成批处理迭代器M,接着使用嵌入层、卷积层、池化层和softmax方法搭建CNN神经网络文本分类模型,导入M到模型中,然后配置训练集模型的超参数和训练参数,给出训练集每1步和测试集每100步的损失函数和准确度,生成训练模型MODEL,最后将待分类短文本集进行预处理之后,得到数据集VALUE2,导入MODEL到预测模型,得出分类结果。本发明不仅节约了计算时间,而且准确率高。
搜索关键词: 一种 基于 tf idf cnn 启发式 文本 特征 提取 分类 方法
【主权项】:
1.一种基于TF‑IDF和CNN启发式短文本特征提取与分类方法,其特征在于,包括如下步骤:(1)对短文本集用结巴分词工具实现中文的文本分词,然后去除文本噪声词,得到文本数据集UNION;(2)使用TF‑IDF特征选择方法处理文本数据集UNION,得出选择后的文本特征值VALUE1,将VALUE1导入到卷积神经网络模型,集成标签并且生成批处理迭代器M;(3)使用嵌入层、卷积层、池化层和softmax方法搭建CNN神经网络文本分类模型,导入M到模型中;(4)配置训练集模型的超参数和训练参数,给出训练集每1步和测试集每100步的损失函数和准确度,生成训练模型MODEL;(5)最后将待分类短文本集进行预处理之后,得到数据集VALUE2,导入MODEL到预测模型,得出分类结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于淮阴工学院,未经淮阴工学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810685215.X/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top