[发明专利]基于深度卷积生成对抗网络的绝缘子样本扩充方法及装置有效
申请号: | 201810721960.5 | 申请日: | 2018-07-04 |
公开(公告)号: | CN109117863B | 公开(公告)日: | 2021-08-13 |
发明(设计)人: | 吴鹏;董世文;高畅;刘思言;王博;韩强;王扬;杨青 | 申请(专利权)人: | 全球能源互联网研究院有限公司;国网天津市电力公司;国家电网有限公司 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 北京三聚阳光知识产权代理有限公司 11250 | 代理人: | 李博洋 |
地址: | 102209 北京*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了基于深度卷积生成对抗网络的绝缘子样本扩充方法及装置,该方法包括:从真实绝缘子样本库中获取真实绝缘子图像输入绝缘子深度卷积生成对抗网络模型,生成模拟绝缘子图像并进行图像质量评分排序,根据图像质量评分排序的结果筛选模拟绝缘子图像,生成模拟样本库,根据真实绝缘子样本库和模拟样本库对预设神经网络模型进行训练,并根据预设神经网络模型的训练结果,得到真实绝缘子图像与模拟绝缘子图像的最优扩充比例,计算模拟绝缘子图像的扩充样本数量,并从模拟样本库中获取后加入真实绝缘子样本库,生成绝缘子样本扩充库。实现了对绝缘子图像样本的扩充,提高了样本图像质量,并提高了识别模型准确性,进而提高了绝缘子的识别率。 | ||
搜索关键词: | 基于 深度 卷积 生成 对抗 网络 绝缘子 样本 扩充 方法 装置 | ||
【主权项】:
1.一种基于深度卷积生成对抗网络的绝缘子样本扩充方法,其特征在于,包括:从真实绝缘子样本库中获取各真实绝缘子图像;分别将各所述真实绝缘子图像输入绝缘子深度卷积生成对抗网络模型,生成各模拟绝缘子图像;对各所述模拟绝缘子图像进行图像质量评分排序,根据所述图像质量评分排序的结果筛选各所述模拟绝缘子图像,生成模拟样本库;根据所述真实绝缘子样本库和所述模拟样本库对预设神经网络模型进行训练,并根据所述预设神经网络模型的训练结果,得到所述真实绝缘子图像与所述模拟绝缘子图像的最优扩充比例;根据所述最优扩充比例和所述真实绝缘子样本库中所述真实绝缘子图像的样本数量,计算所述模拟绝缘子图像的扩充样本数量;根据所述扩充样本数量,从所述模拟样本库中获取各所述模拟绝缘子图像加入所述真实绝缘子样本库,生成绝缘子样本扩充库。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于全球能源互联网研究院有限公司;国网天津市电力公司;国家电网有限公司,未经全球能源互联网研究院有限公司;国网天津市电力公司;国家电网有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810721960.5/,转载请声明来源钻瓜专利网。