[发明专利]一种基于图像多特征融合的水果分类方法及应用有效
申请号: | 201810738976.7 | 申请日: | 2018-07-06 |
公开(公告)号: | CN109002851B | 公开(公告)日: | 2021-04-02 |
发明(设计)人: | 赵天义;刘树安;宫俊 | 申请(专利权)人: | 东北大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06K9/46 |
代理公司: | 大连东方专利代理有限责任公司 21212 | 代理人: | 唐楠;李洪福 |
地址: | 110819 辽宁*** | 国省代码: | 辽宁;21 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于图像多特征融合的水果分类方法及应用,所述方法包括:获取训练集和测试集;预处理;提取颜色特征,LBP纹理特征和形状特征;得到训练集水果特征集合和测试集水果特征集合;将训练集水果特征集合作为多种可进行水果分类的分类器的输入,对多种可进行水果分类的分类器进行训练,将测试集水果特征集合作为多种可进行水果分类的分类器的输入,将平均分类准确率最高的分离器作为最佳分类器;将测试集水果特征集合作为最佳分类器的输入,得到输入的水果特征对应的水果图像中的水果类型。本发明适用于多种水果的分类且检测精度高。 | ||
搜索关键词: | 一种 基于 图像 特征 融合 水果 分类 方法 应用 | ||
【主权项】:
1.一种基于图像多特征融合的水果分类方法,其特征在于,包括:获取水果图像作为训练集和测试集;对训练集和测试集中的水果图像进行预处理:对训练集和测试集中的水果图像进行灰度化处理,均值滤波处理和图片阈值化处理,得到所对应的水果图像的掩模模板;对训练集和测试集中的水果图像提取颜色特征,对训练集和测试集中的水果图像灰度化处理后的灰度图提取LBP纹理特征和形状特征;对每个水果图像对应的颜色特征和LBP纹理特征分别进行直方图处理后与对应的形状特征进行融合作为水果特征,得到训练集水果特征集合和测试集水果特征集合;将训练集水果特征集合作为多种可进行水果分类的分类器的输入,对多种可进行水果分类的分类器进行训练,将测试集水果特征集合作为多种可进行水果分类的分类器的输入,将平均分类准确率最高的分离器作为最佳分类器;将测试集水果特征集合作为最佳分类器的输入,得到输入的水果特征对应的水果图像中的水果类型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东北大学,未经东北大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810738976.7/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序