[发明专利]基于结构随机森林模型的相干光断层图像的层分割方法有效

专利信息
申请号: 201810757623.1 申请日: 2018-07-11
公开(公告)号: CN109272507B 公开(公告)日: 2021-07-13
发明(设计)人: 刘小明;付天宇;曹军;胡威;张凯;刘俊 申请(专利权)人: 武汉科技大学
主分类号: G06T7/10 分类号: G06T7/10;G06K9/46;G06K9/62
代理公司: 杭州宇信知识产权代理事务所(普通合伙) 33231 代理人: 刘艳艳
地址: 430081 湖*** 国省代码: 湖北;42
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于结构随机森林模型的相干光断层图像的层分割方法,包括步骤:S1、图像预处理:对输入图像进行像素值转化和去噪处理;S2、特征提取:先提取手工特征,再训练一个残差网络提取深度特征,然后整合手工特征和深度特征;S3、通过结构随机森林获取层轮廓的概率图:使用训练图像集中数据训练能预测层轮廓的结构随机森林,然后预测测试图像中的层轮廓的概率图;S4、利用最短路径进行层分割:利用最短路径获得具体的层边界位置。该方法结合深度特征和手工特征的优点,手工特征和深度特征的组合可以训练一个更高效的随机结构森林,使得分割性能得到加强;该方法可以分割正常的视网膜图像,也可以分割病变的视网膜图像,具有较高的灵活性和适应性。
搜索关键词: 基于 结构 随机 森林 模型 相干光 断层 图像 分割 方法
【主权项】:
1.一种基于结构随机森林模型的相干光断层图像的层分割方法,其特征在于,包括如下步骤:S1、图像预处理:对输入图像进行像素值转化和去噪处理;S2、特征提取:先提取手工特征,再训练一个残差网络提取深度特征,然后整合手工特征和深度特征;S3、通过结构随机森林获取层轮廓的概率图:使用训练图像集中数据训练能预测层轮廓的结构随机森林,然后预测测试图像中的层轮廓的概率图;S4、利用最短路径进行层分割:在步骤S3获得的概率图上,利用最短路径获得具体的层边界位置。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于武汉科技大学,未经武汉科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810757623.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top