[发明专利]基于深度学习的智能家居用户操控习惯挖掘与推荐方法有效

专利信息
申请号: 201810785469.9 申请日: 2018-07-17
公开(公告)号: CN109299724B 公开(公告)日: 2022-01-28
发明(设计)人: 曾碧;梁天恺 申请(专利权)人: 广东工业大学
主分类号: G06K9/62 分类号: G06K9/62;G06N3/04;G06N3/08
代理公司: 广东广信君达律师事务所 44329 代理人: 杨晓松
地址: 510062 广东*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及基于深度学习的智能家居用户操控习惯挖掘与推荐方法,包括以下步骤:S1:结合无线或有线网络进行用户行为习惯数据的采集;S2:数据读取及数据预处理,形成用户的操控记录矩阵;S3:进行GAN网络对抗训练生成用户一天的操控习惯的特征矩阵;S4:根据用户设备的操控状态的取值范围进行特征值规范化,形成最终的智能家居操控行为推荐方案。本发明能实现从用户历史操控数据中挖掘出用户一整天的操控习惯,而且形成高效,同时增强了智能家居操控行为推荐方案的可扩展性,填补了传统算法的不足。
搜索关键词: 基于 深度 学习 智能家居 用户 操控 习惯 挖掘 推荐 方法
【主权项】:
1.基于深度学习的智能家居用户操控习惯挖掘与推荐方法,其特征在于:包括以下步骤:S1:结合无线或有线网络进行用户行为习惯数据的采集;S2:数据读取及数据预处理,形成用户的操控记录矩阵;S3:进行GAN网络对抗训练生成用户一天的操控习惯的特征矩阵;S4:根据用户设备的操控状态的取值范围进行特征值规范化,形成最终的智能家居操控行为推荐方案。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广东工业大学,未经广东工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810785469.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top