[发明专利]基于深度学习的智能家居用户操控习惯挖掘与推荐方法有效
申请号: | 201810785469.9 | 申请日: | 2018-07-17 |
公开(公告)号: | CN109299724B | 公开(公告)日: | 2022-01-28 |
发明(设计)人: | 曾碧;梁天恺 | 申请(专利权)人: | 广东工业大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 广东广信君达律师事务所 44329 | 代理人: | 杨晓松 |
地址: | 510062 广东*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及基于深度学习的智能家居用户操控习惯挖掘与推荐方法,包括以下步骤:S1:结合无线或有线网络进行用户行为习惯数据的采集;S2:数据读取及数据预处理,形成用户的操控记录矩阵;S3:进行GAN网络对抗训练生成用户一天的操控习惯的特征矩阵;S4:根据用户设备的操控状态的取值范围进行特征值规范化,形成最终的智能家居操控行为推荐方案。本发明能实现从用户历史操控数据中挖掘出用户一整天的操控习惯,而且形成高效,同时增强了智能家居操控行为推荐方案的可扩展性,填补了传统算法的不足。 | ||
搜索关键词: | 基于 深度 学习 智能家居 用户 操控 习惯 挖掘 推荐 方法 | ||
【主权项】:
1.基于深度学习的智能家居用户操控习惯挖掘与推荐方法,其特征在于:包括以下步骤:S1:结合无线或有线网络进行用户行为习惯数据的采集;S2:数据读取及数据预处理,形成用户的操控记录矩阵;S3:进行GAN网络对抗训练生成用户一天的操控习惯的特征矩阵;S4:根据用户设备的操控状态的取值范围进行特征值规范化,形成最终的智能家居操控行为推荐方案。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广东工业大学,未经广东工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810785469.9/,转载请声明来源钻瓜专利网。