[发明专利]一种基于深度置信网络和SVM的网络攻击检测方法有效
申请号: | 201810832545.7 | 申请日: | 2018-07-26 |
公开(公告)号: | CN109194612B | 公开(公告)日: | 2021-05-18 |
发明(设计)人: | 唐舸轩;石波;赵磊;吴朝雄 | 申请(专利权)人: | 北京计算机技术及应用研究所 |
主分类号: | H04L29/06 | 分类号: | H04L29/06;H04L12/24 |
代理公司: | 中国兵器工业集团公司专利中心 11011 | 代理人: | 张然 |
地址: | 100854*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度置信网络和SVM的网络攻击检测方法,其中,包括:步骤1:构造网络攻击行为特征向量;步骤2:确定模型训练集和测试集,给数据制定标签,区分正常行为与攻击行为,并将攻击行为分类;步骤3:构建深度置信网络模型,逐层训练,提取网络攻击行为特征,并计算误差,直至收敛,再对模型的权值进行微调,得到特征向量;步骤4:将提取的特征向量作为输入参数,选择合适的SVM分类器进行训练,对网络攻击行为进行分类,构建网络攻击检测模型;步骤5:构建网络攻击行为分析模型,使用测试集测试模型准确率,计算准确率、误报率与漏报率,并将识别出的网络攻击行为作为训练数据,进行优化。 | ||
搜索关键词: | 一种 基于 深度 置信 网络 svm 攻击 检测 方法 | ||
【主权项】:
1.一种基于深度置信网络和SVM的网络攻击检测方法,其特征在于,包括:步骤1:构造网络攻击行为特征向量;步骤2:确定模型训练集和测试集,给数据制定标签,区分正常行为与攻击行为,并将攻击行为分类;步骤3:构建深度置信网络模型,逐层训练,提取网络攻击行为特征,并计算误差,直至收敛,再对模型的权值进行微调,得到特征向量;步骤4:将提取的特征向量作为输入参数,选择合适的SVM分类器进行训练,对网络攻击行为进行分类,构建网络攻击检测模型;步骤5:构建网络攻击行为分析模型,使用测试集测试模型准确率,计算准确率、误报率与漏报率,并将识别出的网络攻击行为作为训练数据,进行优化。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京计算机技术及应用研究所,未经北京计算机技术及应用研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810832545.7/,转载请声明来源钻瓜专利网。