[发明专利]一种高速铁路沿线极大风速智能遍历大步长预测方法有效
申请号: | 201810846131.X | 申请日: | 2018-07-27 |
公开(公告)号: | CN109063907B | 公开(公告)日: | 2020-06-05 |
发明(设计)人: | 刘辉;陈浩林;李燕飞;陈超 | 申请(专利权)人: | 中南大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q50/30;G06N3/00;G06N3/08 |
代理公司: | 长沙市融智专利事务所(普通合伙) 43114 | 代理人: | 龚燕妮 |
地址: | 410083 湖南*** | 国省代码: | 湖南;43 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种高速铁路沿线极大风速智能遍历大步长预测方法,根据近期风速状况,通过在目标测风点构建目标测风站和时移测风站,对测风站的数据进行去噪处理后,利用PID神经网络,对去噪后的风速数据进行训练,构建各测风站在多种步长下的风速预测模型;选用各模型进行多种步长的最优预测组合,实现多步迭代预测,提高预测精度,降低随机误差的干扰;实现了铁路沿线风速超前预测,可以提前得知事故多发区域的风速环境状况,及时、有效地指导列车运行,保障列车运营安全。 | ||
搜索关键词: | 一种 高速 铁路沿线 极大 风速 智能 遍历 步长 预测 方法 | ||
【主权项】:
1.一种高速铁路沿线极大风速智能遍历大步长预测方法,其特征在于,包括以下步骤:步骤1:在铁路目标测风点设置测风站,包括目标测风站和时移测风站;所述目标测风站距离铁路目标测风点100米,所述时移测风站至少包括3个,且设置铁路目标测风点与目标测风站所在连线上,第一个时移测风站距离铁路目标测风点500米,相邻时移测风站之间间距为500米;步骤2:构建训练样本数据;以相同采样频率采集各测风站在历史时间段内的风速,依次将各测风站的历史风速,以时间间隔T内的风速中值作为各测风站的样本时刻风速,获得训练样本数据;步骤3:利用训练样本数据和设置的预测步长,构建基于PID神经网络的风速预测模型组;依次以目标测风站和所有时移测风站中任意三个测风站在任意历史时刻t0的风速值作为输入数据,剩余测风站在t0+Δt时刻的风速值作为输出数据,对PID神经网络进行训练,获得各测风站预测步长为Δt的基于PID神经网络的风速预测模型;所述预测步长Δt的取值依次为p、2p、3p、4p,p为预测步长单元时间,取值范围为1‑5min,一种预测步长对应一组基于PID神经网络的风速预测模型;步骤4:根据目标预测时间,构建所有测风站的预测任务迭代向量;将目标预测时间m拆分为n个子预测时间hi,依据子预测时间与风速预测模型组的步长进行对应,选择各子预测时间对应的风速预测模型组,形成各测风站预测任务迭代向量l={hi,j},hi,j表示第i个子预测时间选择第j个风速预测模型组进行风速预测的预测子任务,i的取值范围为1‑n,j的取值范围为1‑4;步骤5:利用步骤4获得的任意一种预测任务迭代向量,进行风速预测;以当前时刻t时刻四个测风站的风速数据作为所选预测任务迭代向量中第一个预测子任务的输入数据,以所选预测任务迭代向量最后一个预测子任务输出数据中的目标测风站的风速数据作为目标预测时间m目标测风点的风速预测值;前一个预测子任务的输出数据作为后一个预测子任务的输入数据。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中南大学,未经中南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810846131.X/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理