[发明专利]模型训练方法、装置、识别方法、电子设备及存储介质有效

专利信息
申请号: 201810851349.4 申请日: 2018-07-27
公开(公告)号: CN109145766B 公开(公告)日: 2021-03-23
发明(设计)人: 张弛 申请(专利权)人: 北京旷视科技有限公司
主分类号: G06K9/00 分类号: G06K9/00;G06K9/62
代理公司: 北京超凡志成知识产权代理事务所(普通合伙) 11371 代理人: 王文红
地址: 100000 北京*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明实施例提供一种模型训练方法、装置、识别方法、电子设备及存储介质,涉及图像识别技术领域。该方法包括获取第一特征向量,第一特征向量是由训练样本对第一ReID模型训练获得的全局特征构成的;根据第一ReID模型对训练样本进行聚类分析获得训练样本中的难样本;根据难样本和损失函数训练第二ReID模型,直至第二ReID模型符合预设要求,获得第二特征向量,第二特征向量包括全局特征和局部特征。装置用于执行上述方法。本发明实施例通过利用难样本训练第二ReID模型,并利用损失函数使得第二ReID模型输出的第二特征向量中既包含全局特征又包含布局特征,从而在进行图像重识别是能够同时兼顾一般样例和高度相似样例。
搜索关键词: 模型 训练 方法 装置 识别 电子设备 存储 介质
【主权项】:
1.一种模型训练方法,其特征在于,包括:获取第一行人重识别ReID模型对应的第一特征向量,所述第一特征向量是由训练样本对所述第一ReID模型训练获得的全局特征构成的;根据所述第一ReID模型对所述训练样本进行聚类分析,获得所述训练样本中的难样本;根据所述难样本和损失函数训练第二ReID模型,若本次训练的第二ReID模型不符合预设要求,则对本次训练中所用的难样本进行聚类分析,更新获得下次训练所需的难样本,以及根据本次训练的第二ReID模型更新下次训练所需的损失函数,根据更新的难样本和更新的损失函数对第二ReID模型进行下一次训练,依此循环,直至第二ReID模型符合预设要求,获得第二特征向量;其中,第二特征向量包括局部特征和所述第一特征向量中的全局特征。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京旷视科技有限公司,未经北京旷视科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810851349.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top