[发明专利]一种基于样本共识的近红外光谱建模方法有效
申请号: | 201810857499.6 | 申请日: | 2018-07-31 |
公开(公告)号: | CN109145403B | 公开(公告)日: | 2022-12-13 |
发明(设计)人: | 陈孝敬;李理敏;石文;袁雷明 | 申请(专利权)人: | 温州大学 |
主分类号: | G06F30/20 | 分类号: | G06F30/20;G01N21/25 |
代理公司: | 温州名创知识产权代理有限公司 33258 | 代理人: | 陈加利 |
地址: | 325000 浙江省温州市瓯海*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: |
本发明公开了一种基于样本共识的近红外光谱建模方法,包括以下步骤:选取n个样本,测定某一有机物样本参考值,记为列向量Y,采集n个样本的近红外光谱数据,记为矩阵X,对矩阵X进行预处理,记为矩阵X |
||
搜索关键词: | 一种 基于 样本 共识 红外 光谱 建模 方法 | ||
【主权项】:
1.一种基于样本共识的近红外光谱建模方法,其特征在于包括以下步骤:步骤1,选取n个样本,其中n为小于100的正整数,通过标准化学方法测定某一有机物样本参考值,记为列向量Y;步骤2,采集n个样本的近红外光谱数据,记为矩阵X;步骤3,对矩阵X选用一阶导数、二阶导数、矢量归一化、多远散射校正或平滑处理中的一种或多种方法进行预处理,记为矩阵Xpre;步骤4,将样本参考值列向量Y和光谱数据矩阵Xpre进行合并,记为样本数据矩阵Z,Z=[YXpre];步骤5,采用蒙特卡洛特取样法随机选取样本数据矩阵Z中n/4的样本数据作为预测集记为Zp,Zp中属于列向量Y的部分为Yp,属于Xpre的部分为XP,Zp=[YpXP];步骤6,对样本数据矩阵Z中剩余的3n/4样本按照比例r随机划分得到样本集矩阵Zc,其中r∈[0.5,0.9],以样本集矩阵Zc为建模集、Zp为预测集,建立偏最小二乘回归子模型;步骤7,重复步骤6的操作,对矩阵Z中剩余的3n/4的样本数据进行s次随机划分,以每次得到的Zc为建模集、固定的Zp为预测集分别建立s个偏最小二乘回归子模型f1(x)、f2(x)、f3(x)…fk(x)…fs(x);步骤8,根据步骤7中建立的s个偏最小二乘回归子模型对预测集样本进行预测,并分别计算每个子模型预测值与真实参考值之间的误差,然后计算出s个子模型的权重系数w1、w2、w3…wk…ws,其中wk为第k个子模型的权重系数,权重系数的计算公式为:步骤9,基于权重系数w1、w2、w3…wk…ws对s个子模型进行样本共识,样本共识计算公式为:f(x)为预测精度更高、鲁棒性更优的模型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于温州大学,未经温州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810857499.6/,转载请声明来源钻瓜专利网。