[发明专利]一种基于改进型ArcFace损失函数的图像识别方法有效
申请号: | 201810866142.4 | 申请日: | 2018-08-01 |
公开(公告)号: | CN109241995B | 公开(公告)日: | 2021-05-14 |
发明(设计)人: | 章东平;陈思瑶 | 申请(专利权)人: | 中国计量大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 杭州浙科专利事务所(普通合伙) 33213 | 代理人: | 吴秉中 |
地址: | 315470 浙江省*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于改进型ArcFace损失函数的图像识别方法,采用基于深度学习的图像识别网络对图像的特征进行提取,将提取的特征用来描述图像的主要信息,采用改进型ArcFace损失函数对基于深度学习的图像识别网络进行训练,改进型ArcFace损失函数在角度空间通过既减小类内距离又增大类间距离来最大化分类边界,从而提高图像识别模型识别的准确性。本发明用于模式识别领域。 | ||
搜索关键词: | 一种 基于 改进型 arcface 损失 函数 图像 识别 方法 | ||
【主权项】:
1.一种基于改进型ArcFace损失函数的图像识别方法,其特征在于包括如下步骤:步骤(1):准备图像识别训练数据集、测试数据集;步骤(2):构建基于卷积神经网络的图像识别网络结构,所述基于卷积神经网络的图像识别网络包含卷积层,池化层,全连接层,改进型ArcFace损失函数层,其中,两个卷积层与一个池化层构成一个图像识别子结构,图像识别网络由N个串联的子结构,两个全连接层F1、F2,一个改进型ArcFace损失函数层构成;步骤(3):将图像识别训练数据集输入到步骤(2)构建的基于卷积神经网络的图像识别网络中训练,训练过程中的损失函数采用改进型ArcFace损失函数,通过不断的对网络进行循环迭代训练使损失函数不断减小,直到完成设定的迭代次数Q,并将图像识别模型进行保存;步骤(4):将图像识别测试数据集利用步骤(3)中得到的图像识别模型进行图像特征提取,计算每两个图像特征向量之间的余弦相似度P,设置图像相似度阈值为T,如果相似度P大于阈值T,则判断两张图像是同一类图像,否则判断两张图像不是同一类图像,得到图像识别模型的测试结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国计量大学,未经中国计量大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810866142.4/,转载请声明来源钻瓜专利网。