[发明专利]基于卷积神经网络的真菌显微图像分割检测方法及系统有效

专利信息
申请号: 201810866451.1 申请日: 2018-08-01
公开(公告)号: CN110796661B 公开(公告)日: 2022-05-31
发明(设计)人: 程胜华;吕晓华;曾绍群;刘越;田靓 申请(专利权)人: 华中科技大学
主分类号: G06T7/10 分类号: G06T7/10;G06N3/04
代理公司: 华中科技大学专利中心 42201 代理人: 李智;曹葆青
地址: 430074 湖北*** 国省代码: 湖北;42
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于卷积神经网络的真菌显微图像分割检测方法及系统,包括:将若干真菌显微图像分为正样本与负样本,同时对正样本中的菌丝进行标记得到标记后的正样本;将未标记的负样本和标记后的正样本进行切片和样本增强操作,生成可供进行深度学习的训练数据集;构建深度卷积神经网络模型,读取训练数据集生成用于分割检测的分割模型,以采用分割模型识别待检测真菌显微图像中的致病相和非致病相后,用热值图表示全局的真菌显微图像,并且将致病相结构在待检测真菌显微图像中的轮廓描绘出来。通过本发明不仅对真菌显微图像进行分类,而且能够将致病相的菌丝结构从图像中分割并精准定位。
搜索关键词: 基于 卷积 神经网络 真菌 显微 图像 分割 检测 方法 系统
【主权项】:
1.一种基于卷积神经网络的真菌显微图像分割检测方法,其特征在于,包括:/n(1)将若干真菌显微图像分为正样本与负样本,同时对所述正样本中的菌丝进行标记得到标记后的正样本,其中,所述正样本为包含致病相菌丝结构的图像,所述负样本图像为完全不包含致病相菌丝结构的图像;/n(2)将未标记的正样本、标记后的正样本和所述负样本进行切片和样本增强操作,生成可供进行深度学习的训练数据集;/n(3)构建深度卷积神经网络模型,读取所述训练数据集生成用于分割检测的分割模型,以采用所述分割模型识别待检测真菌显微图像中的致病相和非致病相后,用热值图表示全局的真菌显微图像,并且将致病相结构在所述待检测真菌显微图像中的轮廓描绘出来。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华中科技大学,未经华中科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810866451.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top