[发明专利]一种基于卷积-循环神经网络的有杆泵工况预警方法有效

专利信息
申请号: 201810875355.3 申请日: 2018-08-03
公开(公告)号: CN109272123B 公开(公告)日: 2021-06-22
发明(设计)人: 何岩峰;刘雅莉;王相;窦祥冀;徐慧 申请(专利权)人: 常州大学
主分类号: G06Q10/00 分类号: G06Q10/00;G06Q50/02;G06T7/00;G06N3/04;G06N3/08
代理公司: 常州市英诺创信专利代理事务所(普通合伙) 32258 代理人: 王美华
地址: 213164 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种基于卷积‑循环神经网络的有杆泵工况预警方法,具有如下步骤:有杆泵渐变型工况图集进行预处理后,将预处理后的工况图集输入卷积神经网络CNN进行训练;CNN输出得到目标工况图集所对应的特征序列;训练循环神经网络RNN,提取特征序列的深度特征,建立渐变型工况图集的特征模板,对有杆泵故障进行判断。本发明采用卷积‑循环神经网络,在传统的通过示功体判断有杆泵工况方法中加入时间因素,用以判别与时间序列有关的信息,对于发生渐变型故障的油井,在先期就提出预警,通知现场工作人员及时进行处理,节约资源,实现经济高效的生产。同时,学习与更新后卷积‑循环神经网络随着使用的过程越来越智能,效果越来越好。
搜索关键词: 一种 基于 卷积 循环 神经网络 有杆泵 工况 预警 方法
【主权项】:
1.一种基于卷积‑循环神经网络的有杆泵工况预警方法,所预警的目标工况为有杆泵渐变型工况,其特征是:包括以下步骤:步骤1:挑选符合训练要求的示功图,按照时间顺序排列成有杆泵渐变型工况图集,并对图集进行预处理,以达到要求的标准;步骤2:将预处理后的工况图集输入卷积神经网络CNN进行训练,训练后的CNN输出得到目标工况图集所对应的特征序列;步骤3:将从CNN得到的特征序列作为输入,训练循环神经网络RNN,更新RNN各层的权重,得到训练好的RNN;步骤4:将从CNN得到的特征序列输入训练好的RNN,通过训练好的RNN提取特征序列的深度特征,可建立渐变型工况图集的特征模板,形成基于卷积‑循环神经网络系统的有杆泵工况预警系统;步骤5:在需对未知的有杆泵故障进行判断时,只需要将工况图像按时间顺序输入卷积—循环神经网络,就能进行分类与判断,当发现输入的工况图集符合渐变型工况前期图集特征时,进行预警,即可达到工况判断、预测的目的;步骤6:基于卷积‑循环神经网络的有杆泵工况预警系统的强化学习与更新。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于常州大学,未经常州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810875355.3/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top