[发明专利]一种基于卷积-循环神经网络的有杆泵工况预警方法有效
申请号: | 201810875355.3 | 申请日: | 2018-08-03 |
公开(公告)号: | CN109272123B | 公开(公告)日: | 2021-06-22 |
发明(设计)人: | 何岩峰;刘雅莉;王相;窦祥冀;徐慧 | 申请(专利权)人: | 常州大学 |
主分类号: | G06Q10/00 | 分类号: | G06Q10/00;G06Q50/02;G06T7/00;G06N3/04;G06N3/08 |
代理公司: | 常州市英诺创信专利代理事务所(普通合伙) 32258 | 代理人: | 王美华 |
地址: | 213164 *** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于卷积‑循环神经网络的有杆泵工况预警方法,具有如下步骤:有杆泵渐变型工况图集进行预处理后,将预处理后的工况图集输入卷积神经网络CNN进行训练;CNN输出得到目标工况图集所对应的特征序列;训练循环神经网络RNN,提取特征序列的深度特征,建立渐变型工况图集的特征模板,对有杆泵故障进行判断。本发明采用卷积‑循环神经网络,在传统的通过示功体判断有杆泵工况方法中加入时间因素,用以判别与时间序列有关的信息,对于发生渐变型故障的油井,在先期就提出预警,通知现场工作人员及时进行处理,节约资源,实现经济高效的生产。同时,学习与更新后卷积‑循环神经网络随着使用的过程越来越智能,效果越来越好。 | ||
搜索关键词: | 一种 基于 卷积 循环 神经网络 有杆泵 工况 预警 方法 | ||
【主权项】:
1.一种基于卷积‑循环神经网络的有杆泵工况预警方法,所预警的目标工况为有杆泵渐变型工况,其特征是:包括以下步骤:步骤1:挑选符合训练要求的示功图,按照时间顺序排列成有杆泵渐变型工况图集,并对图集进行预处理,以达到要求的标准;步骤2:将预处理后的工况图集输入卷积神经网络CNN进行训练,训练后的CNN输出得到目标工况图集所对应的特征序列;步骤3:将从CNN得到的特征序列作为输入,训练循环神经网络RNN,更新RNN各层的权重,得到训练好的RNN;步骤4:将从CNN得到的特征序列输入训练好的RNN,通过训练好的RNN提取特征序列的深度特征,可建立渐变型工况图集的特征模板,形成基于卷积‑循环神经网络系统的有杆泵工况预警系统;步骤5:在需对未知的有杆泵故障进行判断时,只需要将工况图像按时间顺序输入卷积—循环神经网络,就能进行分类与判断,当发现输入的工况图集符合渐变型工况前期图集特征时,进行预警,即可达到工况判断、预测的目的;步骤6:基于卷积‑循环神经网络的有杆泵工况预警系统的强化学习与更新。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于常州大学,未经常州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810875355.3/,转载请声明来源钻瓜专利网。
- 上一篇:维修工具基于位置的功能可用性
- 下一篇:餐盒回收管理方法及系统
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理