[发明专利]一种基于深度强化学习的车辆低速跟驰决策方法有效
申请号: | 201810875924.4 | 申请日: | 2018-08-03 |
公开(公告)号: | CN109213148B | 公开(公告)日: | 2021-05-28 |
发明(设计)人: | 孙立博;秦文虎;翟金凤 | 申请(专利权)人: | 东南大学 |
主分类号: | G05D1/02 | 分类号: | G05D1/02 |
代理公司: | 南京众联专利代理有限公司 32206 | 代理人: | 蒋昱 |
地址: | 210096 *** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度强化学习的车辆低速跟驰决策方法,所述方法通过以下方式实现:首先通过车联网实时接收前方车辆和后方车辆的位置、速度、加速度信息,作为环境状态,对无人车的当前状态和行为进行表达,然后构建基于Actor‑Critic框架的深度强化学习结构,最后Actor根据当前环境状态选择合适动作,并通过Critic给出的评价不断进行训练学习,从而获取最优控制策略,使得无人车能够与前方车辆以及后方车辆保持一定的安全距离,在城市拥堵工况下实现车辆低速自动跟踪前车行驶。本发明提出的基于深度强化学习的车辆低速跟驰决策方法不仅提高了驾驶的舒适性,而且保证了交通的安全性,更提高了拥堵车道的畅通率。 | ||
搜索关键词: | 一种 基于 深度 强化 学习 车辆 低速 决策 方法 | ||
【主权项】:
1.一种基于深度强化学习的车辆低速跟驰决策方法,该算法包括步骤如下,其特征在于:(1)通过车联网实时接收前方车辆和后方车辆的位置、速度、加速度信息,作为环境状态,对无人车的当前状态和行为进行表达;(2)构建基于Actor‑Critic框架的深度强化学习结构,该结构以环境状态、无人车的当前状态作为输入,无人车的加速度作为输出;(3)对深度强化学习结构中的Actor网络和Critic网络的参数进行训练,并对Critic网络参数θv和Actor网络参数θμ进行更新,多次训练完成后,无人车能够与前方车辆以及后方车辆保持一定的安全距离,在城市拥堵工况下实现车辆低速自动跟踪前车行驶。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810875924.4/,转载请声明来源钻瓜专利网。