[发明专利]一种基于深度学习的钢轨表面缺陷检测方法在审

专利信息
申请号: 201810885515.2 申请日: 2018-08-06
公开(公告)号: CN109064462A 公开(公告)日: 2018-12-21
发明(设计)人: 张辉;宋雅男;刘理;钟杭;梁志聪 申请(专利权)人: 长沙理工大学
主分类号: G06T7/00 分类号: G06T7/00;G06T7/12;G06T7/181;G01N21/88
代理公司: 深圳市兴科达知识产权代理有限公司 44260 代理人: 王翀;贾庆
地址: 410114 湖*** 国省代码: 湖南;43
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于深度学习的钢轨表面缺陷检测方法,本发明克服了传统非智能化的钢轨表面缺陷检测方法,结合深度学习的研究成果,提出运用基于语义分割的钢轨表面缺陷检测,可用于无损、无接触检测。描述采集的钢轨表面图像被制作成钢轨数据集送入到设计的神经网络中,运用基于语义分割的自定义网络训练学习,最终得到训练完成的网络,用于钢轨表面缺陷图像检测并标记缺陷区域,结合后端的图像处理技术获取缺陷轮廓,可进行智能识别,达到高精度检测、减少人工干预的目的。
搜索关键词: 钢轨表面缺陷 检测 语义分割 学习 图像处理技术 高精度检测 无接触检测 标记缺陷 钢轨表面 缺陷轮廓 人工干预 神经网络 图像检测 网络训练 智能识别 数据集 智能化 自定义 钢轨 可用 无损 送入 采集 图像 制作 网络 研究
【主权项】:
1.一种基于深度学习的钢轨表面缺陷检测方法,其特征在于,包括如下步骤:步骤一、制作数据集:采集钢轨表面图像;定义钢轨缺陷的标准,并使用图像编辑软件将缺陷的区域用一种颜色表示,非缺陷区域用另一种颜色表示;在卷积神经网络中训练使用的标签数据集里定义RGB值来赋予其物理意义;钢轨缺陷标准,如下:1.裂缝状的缺陷:分布特性是垂直或者水平出现在钢轨表面,呈现距离长,宽度小的特性,与反光的阴影带有明显的区别,颜色与钢轨本体表面存在色差;2.规则圆的缺陷:分布特性随机,呈现偏圆形的内凹状,如同一个个小洞口,颜色与钢轨本体表面存在色差;3.不规则状:分布特性是随机的,呈现不规则状,既有小的缺陷也有大的缺陷;小的缺陷与大的缺陷是交错设置;4.模糊状缺陷:随机分布,形状也是随机,偏向内凹;步骤二、设计训练网络:采用SegNet网络结构设计构建训练用的卷积神经网络结构;步骤三:设定训练参数:采用随机梯度下降算法和反向传播算法计算训练网络各节点的权重值,离线训练深度神经网络模型;步骤四、构建数据集及训练设置:对获得的钢轨表面图像,随机从所有图像中挑选一部分为训练集,一部分为测试集,进行训练;在训练时,将训练集数据进行训练数据集增强处理:将图片像素在水平方向移动10个像素点,以及在垂直方向上同样移动10个像素点以增强训练数据的泛化能力,同时满足小样本数据训练能够获得最大的训练效果;得到训练网络模型;步骤五、测试图片的后端处理:当训练完成后,将待检测的钢轨表面缺陷图像加入训练网络模型检测,得到钢轨表面缺陷的粗糙分割区域;接着使用CRF算法对粗分割的钢轨表面图像进行细分割:CRF算法符合吉布斯分布,如式(1)所示。式(1)中,E(x|I)是能量函数,由式(2)的两部分组成分别是一元势函数与二元势函数;x表示输出的标记序列,I表示输入的观测序列;Z()表示规范化因子;P()表示条件随机场;E(x)=∑iψu(xi)+∑i<jψp(xi,xj)  (2)其中,ψu(xi)表示像素i分割成xi的能量,i表示像素点i,j表示像素点j,u表示一元能量函数,p表示二元能量函数;xi表示像素i的标签,xj表示像素j的标签;ψp(xi,xj)表示像素点i,j同时分割成xi,xj的能量;一元势函数∑iΨu(xi)是来自设计网络前端输出,E(x|I)的二元势函数构造如式(3)所示。m表示m阶矩阵,标记x的取值个数,w()表示权值;表示高斯权重项,用于衡量像素点i,j的特征向量相似度;fi表示i的特征向量;fj表示j的特征向量;u()表示两个标签之间的兼容性度量;其中二元势函数的定义与颜色值和真实空间距离相关,颜色值或真实空间距离的相似度高于设定阈值的像素赋予相同的标签,否则赋予不同的标签;得到钢轨表面缺陷结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于长沙理工大学,未经长沙理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810885515.2/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top