[发明专利]基于卷积神经网络的图像处理方法、装置及可读存储介质在审
申请号: | 201810902229.2 | 申请日: | 2018-08-09 |
公开(公告)号: | CN109117897A | 公开(公告)日: | 2019-01-01 |
发明(设计)人: | 杨少雄;赵晨 | 申请(专利权)人: | 百度在线网络技术(北京)有限公司 |
主分类号: | G06K9/66 | 分类号: | G06K9/66;G06N3/04;G06N3/08 |
代理公司: | 北京同立钧成知识产权代理有限公司 11205 | 代理人: | 张子青;刘芳 |
地址: | 100085 北京市*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供的基于卷积神经网络的图像处理方法、装置及可读存储介质,通过采用构建卷积神经网络的网络架构,所述架构包括依次连接的卷积层、采用中值池化算法的池化层、全连接层和分类器层;根据采集获得的图像样本集对构建的卷积神经网络进行训练,获得训练完毕的卷积神经网络模型;根据训练完毕的卷积神经网络模型对待识别的图像进行识别;其中,所述训练完毕的卷积神经网络模型中的池化层采用中值池化算法,以使将待识别图像的各区块对应特征值中的中值作为最佳特征值输出至全连接层。从而可利用中值池化算法对卷积神经网络模型进行处理,有效解决了现有技术中由于采用最大值池化算法和均值池化算法而使得图像识别的准确率受到影响的问题。 | ||
搜索关键词: | 卷积神经网络 池化 算法 可读存储介质 图像处理 连接层 构建 图像 图像识别 图像样本 网络架构 依次连接 有效解决 分类器 准确率 卷积 架构 采集 输出 | ||
【主权项】:
1.一种基于卷积神经网络的图像处理方法,其特征在于,包括:构建卷积神经网络的网络架构,所述架构包括依次连接的卷积层、采用中值池化算法的池化层、全连接层和分类器层;根据采集获得的图像样本集对构建的卷积神经网络进行训练,获得训练完毕的卷积神经网络模型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于百度在线网络技术(北京)有限公司,未经百度在线网络技术(北京)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810902229.2/,转载请声明来源钻瓜专利网。