[发明专利]基于双隐层回归神经网络的有源电力滤波器全局滑模控制方法有效
申请号: | 201810915690.1 | 申请日: | 2018-08-13 |
公开(公告)号: | CN109100937B | 公开(公告)日: | 2022-04-01 |
发明(设计)人: | 储云迪;费峻涛;王欢;冯治琳 | 申请(专利权)人: | 河海大学常州校区 |
主分类号: | G05B13/04 | 分类号: | G05B13/04 |
代理公司: | 南京纵横知识产权代理有限公司 32224 | 代理人: | 董建林 |
地址: | 213022 江苏*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于双隐层回归神经网络的有源电力滤波器全局滑模控制方法,其特征在于,包括如下步骤:1)建立有源电力滤波器的数学模型;2)建立基于双隐层回归神经网络的有源电力滤波器全局滑模控制器,设计控制律,将其作为有源电力滤波器的控制输入;3)基于Lyapunov函数理论,设计自适应律,验证所述基于双隐层回归神经网络的有源电力滤波器全局滑模控制器的稳定性。优点:提高网络的逼近精度和泛化能力,减少网络参数和权值个数,加快网络训练速度;能够储存更多的信息,具有更好的逼近效果;能够提高有源电力滤波器系统在存在参数摄动和外界干扰情况下的补偿电流跟踪精度和系统鲁棒性。 | ||
搜索关键词: | 基于 双隐层 回归 神经网络 有源 电力 滤波器 全局 控制 方法 | ||
【主权项】:
1.一种基于双隐层回归神经网络的有源电力滤波器全局滑模控制方法,其特征在于,包括如下步骤:1)建立有源电力滤波器的数学模型;2)建立基于双隐层回归神经网络的有源电力滤波器全局滑模控制器,设计控制律,将其作为有源电力滤波器的控制输入;3)基于Lyapunov函数理论,设计自适应律,验证所述基于双隐层回归神经网络的有源电力滤波器全局滑模控制器的稳定性。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于河海大学常州校区,未经河海大学常州校区许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810915690.1/,转载请声明来源钻瓜专利网。