[发明专利]一种基于深度学习的机柜灯状态识别方法在审
申请号: | 201810926063.8 | 申请日: | 2018-08-15 |
公开(公告)号: | CN109086781A | 公开(公告)日: | 2018-12-25 |
发明(设计)人: | 余贵珍;张艳飞;张思佳;牛欢;张力 | 申请(专利权)人: | 北京航空航天大学 |
主分类号: | G06K9/46 | 分类号: | G06K9/46;G06K9/62;G06N3/08 |
代理公司: | 厦门福贝知识产权代理事务所(普通合伙) 35235 | 代理人: | 郝学江 |
地址: | 100191*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供一种基于深度学习的机柜灯状态识别方法,包括以下步骤:初始化模型参数,获得模型与对应的模型参数;通过相机获取机柜灯状态的图片;基于深度学习技术识别图片中的灯和灯组;根据不同机柜状态设置不同的识别目标和判断异常的阈值;基于寻找轮廓的算法获得实际工作中机柜灯组内灯的数量;将所述灯的数量与所述阈值进行比较,进而识别机柜灯的状态。本发明通过引入深度学习技术,能够实现自动识别机柜灯状态的目的,进而判断机柜是否正常工作。本发明无需在机柜内植入软件或串接新的设备,工作过程不受环境影响,工作效率、识别精度和鲁棒性高。 | ||
搜索关键词: | 机柜 灯状态 模型参数 学习 自动识别机 工作效率 环境影响 技术识别 植入软件 状态设置 初始化 鲁棒性 串接 柜灯 算法 在机 相机 引入 图片 | ||
【主权项】:
1.一种基于深度学习的机柜灯状态识别方法,其特征在于,包括以下步骤:初始化模型参数,获得模型与对应的模型参数;通过相机获取机柜灯状态的图片;基于深度学习技术识别图片中的灯和灯组;根据不同机柜状态设置不同的识别目标和判断异常的阈值;基于寻找轮廓的算法获得实际工作中机柜灯组内灯的数量;将所述灯的数量与所述阈值进行比较,进而识别机柜灯的状态。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京航空航天大学,未经北京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810926063.8/,转载请声明来源钻瓜专利网。