[发明专利]粒子群算法优化LSTM神经网络的行程时间预测方法有效
申请号: | 201810946075.7 | 申请日: | 2018-08-20 |
公开(公告)号: | CN108986470B | 公开(公告)日: | 2022-03-29 |
发明(设计)人: | 温惠英;张东冉 | 申请(专利权)人: | 华南理工大学 |
主分类号: | G08G1/01 | 分类号: | G08G1/01;G06N3/04 |
代理公司: | 广州粤高专利商标代理有限公司 44102 | 代理人: | 何淑珍;黄海波 |
地址: | 511458 广东省广州市*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种粒子群算法优化LSTM神经网络的行程时间预测方法,包括如下步骤:步骤S1:采集行程时间数据,进行数据归一化,按比例划分为训练集和测试集;步骤S2:采用粒子群算法优化LSTM神经网络预测模型的各个参数;步骤S3:输入粒子群算法优化好的参数、训练集,进行LSTM神经网络预测模型的迭代优化;步骤S4:利用已训练好的LSTM神经网络模型对测试集进行预测,并评估模型误差。本发明的方法寻优速度快,同传统预测算法中的随机森林、SVM、KNN相比较,本发明方法对数据预测均方误差和均方根误差最小,模型减少了计算量,表现出更好的预测性能。 | ||
搜索关键词: | 粒子 算法 优化 lstm 神经网络 行程 时间 预测 方法 | ||
【主权项】:
1.一种粒子群算法优化LSTM神经网络的行程时间预测方法,其特征在于:包括如下步骤:步骤S1:采集行程时间数据,进行数据归一化,按比例划分为训练集和测试集;步骤S2:采用粒子群算法优化LSTM神经网络预测模型的各个参数;步骤S3:输入粒子群算法优化好的参数、训练集,进行LSTM神经网络预测模型的迭代优化;步骤S4:利用已训练好的LSTM神经网络模型对测试集进行预测,并评估模型误差。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810946075.7/,转载请声明来源钻瓜专利网。