[发明专利]基于神经网络图像分类算法的设备状态反馈方法及系统在审
申请号: | 201810960128.0 | 申请日: | 2018-08-22 |
公开(公告)号: | CN109389146A | 公开(公告)日: | 2019-02-26 |
发明(设计)人: | 邵焕新;赵宪;黄龙 | 申请(专利权)人: | 中翔科技(杭州)有限公司 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 广州市越秀区哲力专利商标事务所(普通合伙) 44288 | 代理人: | 胡拥军;糜婧 |
地址: | 311121 浙江省杭州市余杭区余*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供的基于神经网络图像分类算法的设备状态反馈方法,包括获取原始图片集和待检测设备图片,原始图片集为含有若干不同状态的设备图片;原始图片集划分,将原始图片集划分为训练集和验证集;将训练集输入至神经网络图像分类算法进行训练并得到训练模型;将待检测设备图片输入至训练模型,训练模型输出分类结果;根据分类结果判断待检测设备图片对应的待检测设备的设备状态,并将设备状态发送至运维管理平台;本发明的基于神经网络图像分类算法的设备状态反馈方法,可以同时对数以万计的交通监控设备进行状态检测,使对于交通监控设备的检测不再有局限性,同时也提高了检测结果的精准率,节省了大量的人力成本。 | ||
搜索关键词: | 设备状态 待检测设备 神经网络 图像分类 原始图片 算法 训练模型 交通监控设备 分类结果 训练集 反馈 检测结果 人力成本 图片输入 运维管理 状态检测 验证集 图片 发送 输出 检测 | ||
【主权项】:
1.基于神经网络图像分类算法的设备状态反馈方法,所述设备状态反馈方法应用在交通监控系统,其特征在于包括:图片获取,获取原始图片集和待检测设备图片,所述原始图片集为含有若干不同状态的设备图片;原始图片集划分,将所述原始图片集划分为训练集和验证集;生成训练模型,将所述训练集输入至神经网络图像分类算法进行训练并得到训练模型;设备图片检测,将所述待检测设备图片输入至所述训练模型,所述训练模型输出分类结果;设备状态判断,根据所述分类结果判断所述待检测设备图片对应的待检测设备的设备状态,并将所述设备状态发送至运维管理平台。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中翔科技(杭州)有限公司,未经中翔科技(杭州)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810960128.0/,转载请声明来源钻瓜专利网。