[发明专利]一种基于模态应变能和卷积神经网络的结构损伤识别方法有效

专利信息
申请号: 201810962487.X 申请日: 2018-08-22
公开(公告)号: CN109145446B 公开(公告)日: 2023-04-18
发明(设计)人: 陈贡发;龚盼盼 申请(专利权)人: 广东工业大学
主分类号: G06F30/27 分类号: G06F30/27;G06F30/23;G06N3/0464;G06N3/048;G06F111/10
代理公司: 广州粤高专利商标代理有限公司 44102 代理人: 林丽明
地址: 510006 广东*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开一种基于模态应变能和卷积神经网络的结构损伤识别方法,包括以下步骤:S1:通过软件模拟构建结构模型,并根据结构模型进行单元划分;S2:模拟结构模型在不同单元的若干种结构损伤情况;S3:提取结构在自由振动情况下的第一阶模态应变能,所得的数据转化为矩阵数据形式,作为卷积神经网络的输入;S4:对卷积神经网络进行训练;S5:对结构进行实际测量,并按照S1的单元划分方式计算不同单元在不同阶模态的模态应变能;S6:将S5的模态矢量的数据矩阵代入到S4的训练后的卷积神经网络,得到结构的损伤结果。本发明提高损伤识别的精度,减少了干扰单元,并且可以识别出损伤程度,单一利用模态应变能不能识别出损伤的程度。
搜索关键词: 一种 基于 应变 卷积 神经网络 结构 损伤 识别 方法
【主权项】:
1.一种基于模态应变能和卷积神经网络的结构损伤识别方法,其特征在于,包括以下步骤:S1:通过软件模拟构建结构模型,并根据结构模型进行单元划分;S2:模拟结构模型在不同单元的若干种结构损伤情况;S3:提取结构在自由振动情况下的第一阶模态应变能,所得的数据转化为矩阵数据形式,作为卷积神经网络的输入;S4:对卷积神经网络进行训练;S5:对结构进行实际测量,并按照S1的单元划分方式测量不同单元在不同阶模态的模态应变能,形成与S3对应的矩阵数据形式;S6:将S5的模态矢量的数据矩阵代入到S4的训练后的卷积神经网络,得到结构的损伤结果,所述的损伤结果包括结构的损伤的位置和结构的损伤的程度。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广东工业大学,未经广东工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810962487.X/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top