[发明专利]基于Kleinberg在线状态机的社交网络事件检测方法有效

专利信息
申请号: 201810992986.3 申请日: 2018-08-29
公开(公告)号: CN109145114B 公开(公告)日: 2021-08-03
发明(设计)人: 费高雷;张乐中;胡光岷;杨立波 申请(专利权)人: 电子科技大学
主分类号: G06F16/35 分类号: G06F16/35;G06F16/9536;G06F40/289;G06K9/62;G06F40/216
代理公司: 成都虹盛汇泉专利代理有限公司 51268 代理人: 王伟
地址: 611731 四川省成*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于Kleinberg在线状态机的社交网络事件检测方法,包括以下步骤:S1、获取社交网络的推文数据,对获取的推文数据进行预处理;S2、对推文文本进行增量聚类,根据文本相似度对文本进行划分;S3、利用Kleinberg状态机对单词相关文本的生成时间间隔序列建立突发检测模型,识别单词的突发结构;S4、突发事件判定。本发明采用连续时间模型,能够细粒度地识别单词特征的突发结构信息,有助于缓解社交网络事件的早期发现问题;能够比较全面的检测出事件的单词突发特征,适用于流式数据,利用事件的突发结构关系和共现关系,能够提高社交网络事件检测的准确度。
搜索关键词: 基于 kleinberg 在线 状态机 社交 网络 事件 检测 方法
【主权项】:
1.基于Kleinberg在线状态机的社交网络事件检测方法,其特征在于,包括以下步骤:S1、获取社交网络的推文数据,对获取的推文数据进行预处理;S2、对推文文本进行增量聚类,根据文本相似度对文本进行划分,划分结果为簇;S3、基于Kleinberg在线状态机单词突发特征识别,利用Kleinberg状态机对单词相关文本的生成时间间隔序列建立突发检测模型,识别单词的突发结构;S4、突发事件判定,基于聚类簇中突发结构关系和突发单词之间的共现关系,判断聚类簇中是否描述一个事件。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810992986.3/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top