[发明专利]一种用于复杂故障的工业过程故障诊断方法有效
申请号: | 201811008835.6 | 申请日: | 2018-08-30 |
公开(公告)号: | CN109062189B | 公开(公告)日: | 2020-06-30 |
发明(设计)人: | 郑英;周威;张洪;王彦伟 | 申请(专利权)人: | 华中科技大学 |
主分类号: | G05B23/02 | 分类号: | G05B23/02 |
代理公司: | 华中科技大学专利中心 42201 | 代理人: | 李智;曹葆青 |
地址: | 430074 湖北*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种用于复杂故障的工业过程故障诊断方法,包括:采集正常模式下的样本数据并建立故障监控模型;使用极大似然估计求解参数,得到变量i的概率密度函数;采集待诊断的样本并计算统计量;当检测到故障发生时,计算每一个变量的偏差因子,并训练出偏差因子的条件概率密度函数,由此计算出后验概率;选取后验概率最高的变量进行多维重构,找出故障变量。本发明计算量小,可以准确在复杂故障下进行工业过程故障诊断。对工业过程结果显著,有效针对小故障、多变量同时故障、变量维度过高等复杂故障问题。 | ||
搜索关键词: | 一种 用于 复杂 故障 工业 过程 故障诊断 方法 | ||
【主权项】:
1.一种用于复杂故障的工业过程故障诊断方法,其特征在于,包括:(1)采集正常模式下的样本数据,组成训练集数据矩阵X∈Rn×m,其中n为样本的个数,m为变量的维度;(2)对于正常模式下的样本数据,使用极大似然估计求解参数,得到变量i的概率密度函数p(xi|N);(3)利用预处理后的训练集数据矩阵建立故障监控模型,利用故障监控模型计算正常模式下的统计量和正常模式下的控制限;(4)采集待诊断的样本x(t),使用预处理后的训练集数据矩阵计算x(t)的统计量,当x(t)的统计量大于正常模式下的控制限时,则发生故障;(5)在t时刻对变量i的概率密度函数p(xi|N)进行积分,得到t时刻样本的第i个变量的偏差因子
并作为故障样本的特征量;(6)利用正常模式下的样本数据,得到故障样本的特征量
在正常模式和故障模式下的条件概率密度函数;(7)根据步骤(4)的故障诊断情况,计算t时刻变量i的先验概率,根据正常模式和故障模式下的条件概率密度函数以及先验概率计算后验概率;(8)选取后验概率最高的变量加入候选诊断集,根据候选诊断集得到多维重构方向,基于多维重构方向进行重构得到重构之后的故障监测统计量
(9)若重构之后的故障统计量
小于正常模式下控制限,则候选诊断集所包含变量是故障变量,完成故障诊断;否则,继续添加变量至候选诊断集Sf,直到
小于正常模式下控制限。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华中科技大学,未经华中科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811008835.6/,转载请声明来源钻瓜专利网。