[发明专利]一种基于深度时空修正模型的城市区域尾气污染预测方法在审

专利信息
申请号: 201811022964.0 申请日: 2018-09-03
公开(公告)号: CN109214570A 公开(公告)日: 2019-01-15
发明(设计)人: 许镇义;杜晓冬 申请(专利权)人: 安徽优思天成智能科技有限公司
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q50/26
代理公司: 合肥汇融专利代理有限公司 34141 代理人: 赵宗海
地址: 230088 安徽省合肥市高新区*** 国省代码: 安徽;34
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供一种基于深度时空修正模型的城市区域尾气污染预测方法,包括:多源异构数据获取;自编码器特征抽取,通过构建三层自编码器网络结构,实现对所述多源异构数据特征降维抽取;尾气排放修正,将所述步骤二中提取的各数据源的降维特征数据,代入尾气排放修正模型;时空序列数据生成;深度时空网络模型预训练;将真实监测点位的遥测数据替换修正模型数据,重新训练得到修正的区域尾气排放预测模型;确定模型的权重参数,得到深度时空网络模型,输入所述多源异构数据,得到预测的区域尾气污染排放结果。
搜索关键词: 修正模型 多源异构数据 尾气排放 尾气污染 时空 城市区域 网络模型 编码器 预测 修正 权重参数 时空序列 数据生成 特征抽取 特征降维 特征数据 网络结构 遥测数据 预测模型 数据源 点位 构建 降维 三层 替换 抽取 排放 监测
【主权项】:
1.一种基于深度时空修正模型的城市区域尾气污染预测方法,其特征在于,所述方法包括步骤:步骤一、多源异构数据获取;步骤二、自编码器特征抽取,通过构建三层自编码器网络结构,实现对所述多源异构数据特征降维抽取;步骤三、尾气排放修正,将所述步骤二中提取的各数据源的降维特征数据,代入尾气排放修正模型;步骤四、时空序列数据生成;步骤五、深度时空网络模型预训练;步骤六、将真实监测点位的遥测数据替换修正模型数据,重新训练得到修正的区域尾气排放预测模型;确定模型的权重参数,得到深度时空网络模型,输入所述多源异构数据,得到预测的区域尾气污染排放结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于安徽优思天成智能科技有限公司,未经安徽优思天成智能科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201811022964.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top