[发明专利]基于多层次端到端神经网络的人类活动姿态识别方法有效
申请号: | 201811029641.4 | 申请日: | 2018-09-05 |
公开(公告)号: | CN109325428B | 公开(公告)日: | 2020-11-27 |
发明(设计)人: | 周军;黄家辉 | 申请(专利权)人: | 周军 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 成都佳划信知识产权代理有限公司 51266 | 代理人: | 余小丽 |
地址: | 610000 四川省成都市高*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于多层次端到端神经网络的人类活动姿态识别方法,包括以下步骤:采集人类活动姿态的带标签数据,采用滑窗切割所述带标签数据,得到数段等距的第一带标签数据窗,利用基于步态的数据增强算法处理所述第一带标签数据窗以获得数段第二带标签数据窗;采用所述第一带标签数据窗和第二带标签数据窗对多层次端到端神经网络训练。采集任一人类活动姿态的原始数据,并对所述原始数据进行滑窗切割,得到数段连续的待识别的动作数据窗;将所述待识别的动作数据窗依次导入经训练的多层次端对端神经网络,判别人类活动姿态的类型。本发明具有识别准确率高、计算复杂度低、功耗低等优点,在医疗技术、行为监督等领域具有广阔的市场前景。 | ||
搜索关键词: | 基于 多层次 端到端 神经网络 人类 活动 姿态 识别 方法 | ||
【主权项】:
1.基于多层次端到端神经网络的人类活动姿态识别方法,采用数个布设在人体表面、且用于采集人类活动姿态的原始数据和带标签数据的运动传感器;所述运动传感器包括加速计、陀螺仪、磁力计,其特征在于,包括以下步骤:多层次端到端神经网络训练:利用运动传感器采集人类活动姿态的带标签数据,采用滑窗切割所述带标签数据,得到数段等距的第一带标签数据窗,利用基于步态的数据增强算法处理所述第一带标签数据窗以获得数段第二带标签数据窗;采用所述第一带标签数据和第二带标签数据窗对多层次端到端神经网络训练;分层次识别:利用所述运动传感器采集任一人类活动姿态的原始数据,并对所述原始数据进行滑窗切割,得到数段连续的待识别的动作数据窗;将所述待识别的动作数据窗依次导入经训练的多层次端对端神经网络,判别人类活动姿态的类型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于周军,未经周军许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811029641.4/,转载请声明来源钻瓜专利网。