[发明专利]一种基于分部式高斯混合模型的冰下层位检测方法有效
申请号: | 201811042722.8 | 申请日: | 2018-09-07 |
公开(公告)号: | CN109492190B | 公开(公告)日: | 2022-11-15 |
发明(设计)人: | 刘艳;赵博;刘小军;王强 | 申请(专利权)人: | 中国科学院大学 |
主分类号: | G06F17/18 | 分类号: | G06F17/18;G06K9/62 |
代理公司: | 北京中济纬天专利代理有限公司 11429 | 代理人: | 杨乐 |
地址: | 100049 北*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及冰下层位的检测方法,具体涉及基于分部式高斯混合模型的冰下层位检测方法。包括步骤为:对待处理探冰雷达数据,构建分部式高斯混合模型;对各分部探冰雷达数据,分别采用模糊C均值聚类处理和期望最大化算法,迭代求解各高斯分布模型中模型参数的初值和最大似然估计值;基于迭代求解结果,构建分类标签矩阵,实现冰下层位检测。本发明基于探冰雷达数据,通过构建分部式高斯混合模型,反映冰下介质属性的差异,降低冰下噪声干扰的同时,实现对冰下层位的有效检测和提取。 | ||
搜索关键词: | 一种 基于 分部 式高斯 混合 模型 层位 检测 方法 | ||
【主权项】:
1.一种基于分部式高斯混合模型的冰下层位检测方法,其特征在于,所述方法包括以下步骤:(1)对待处理探冰雷达数据X(r,t),构建分部式高斯混合模型,得到K个分部探冰雷达数据X(k)(r,t),(k=1,2,...,K),其分别对应一种高斯分布φ(X|θk),(k=1,2,...,K);(2)对各分部探冰雷达数据X(k)(r,t),(k=1,2,...,K),分别采用模糊C均值聚类处理和期望最大化算法,迭代求解各高斯分布模型中模型参数的初值和最大似然估计值;(3)基于迭代求解结果,构建分类标签矩阵L,基于此实现冰下层位检测。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院大学,未经中国科学院大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811042722.8/,转载请声明来源钻瓜专利网。