[发明专利]基于神经网络的股票价格趋势预测方法及系统在审

专利信息
申请号: 201811064533.0 申请日: 2018-09-12
公开(公告)号: CN109190834A 公开(公告)日: 2019-01-11
发明(设计)人: 卢茜妍;梁庆梅;吴沁琳 申请(专利权)人: 百色学院
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q40/04;G06N3/08
代理公司: 北京天奇智新知识产权代理有限公司 11340 代理人: 李家恒
地址: 533001 广西壮*** 国省代码: 广西;45
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于神经网络的股票价格趋势预测方法及其系统,本发明的神经网络模型基于多层人工神经网络结构而构建,多层人工神经网络结构采用的算法能快速收敛计算得到最小化损失函数,并且在损失函数中引入的λ参数能够避免了宏观经济环境变化或股票基本面突发性变化所带来的预测偏差,极大的优化了神经网络模型预测的准确度,适用范围广。同时,本发明多层人工神经网络所采用的损失函数中采用前向和反向传播训练算法找到优化的权重参数ji(L),采用的卷积训练算法收敛较快,程序运行效率高、实时性强,对硬件配置无需很高要求,系统性价比高。
搜索关键词: 损失函数 多层 人工神经网络结构 股票价格 趋势预测 神经网络 训练算法 神经网络模型预测 人工神经网络 神经网络模型 系统性价比 准确度 程序运行 反向传播 环境变化 快速收敛 权重参数 硬件配置 基本面 实时性 最小化 构建 卷积 前向 算法 收敛 优化 股票 引入 预测
【主权项】:
1.基于神经网络的股票价格趋势预测方法,其特征在于,包括以下步骤:S1、根据选取原则选取作为多层人工神经网络的输入变量的股票技术特征参数,并获取目标股票的交易历史数据,以作为训练的输入训练集;S2、构建基于多层人工神经网络结构的神经网络模型,其中,所述多层人工神经网络结构包括一个输入层、一个输出层和两个以上的隐层,所述输入层设有n个节点,输出层设有一个节点且输出层的输出结果用以表示所预测的目标股票交易价格的升跌概率;其中所述多层人工神经网络结构的损失函数如下:式中m为训练数据组的个数,x为输入变量,λ为基本面量化参数,h(x)为输出层的输出结果,ji(L)为权重参数;S3、将所述目标股票的交易历史数据构建训练数据集和测试数据集;S4、向多层神经网络结构中输入训练数据集,多层神经网络进行训练和有监督的学习,得到初步的用于预测股票交易价格趋势的神经网络预测模型;S5、向步骤S4得到的神经网络预测模型输入测试数据集,对神经网络预测模型进行泛化能力测试,并根据测试结果进行参数调整和优化处理,得到最终的预测模型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于百色学院,未经百色学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201811064533.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top