[发明专利]一种应用于红外火焰识别的自组织TS型模糊网络建模方法有效
申请号: | 201811080145.1 | 申请日: | 2018-09-17 |
公开(公告)号: | CN109272037B | 公开(公告)日: | 2020-10-09 |
发明(设计)人: | 谢林柏;温子腾;谭勇;冯宏伟 | 申请(专利权)人: | 江南大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G06N3/08;G01J5/00 |
代理公司: | 苏州市中南伟业知识产权代理事务所(普通合伙) 32257 | 代理人: | 殷海霞;查杰 |
地址: | 214122 江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本申请公开了一种应用于红外火焰识别的自组织TS型模糊网络建模方法,包括如下步骤:(1)采集不同火焰、干扰源的时域信号数据,并对时域信号数据进行预处理,得到频域信号数据;(2)对波形的时域、频域信号数据进行特征信息的提取,获得火焰的特征向量,组成样本集;(3)将样本集划分为训练集、验证集和测试集;(4)搭建TS‑RBF模糊神经网络;(5)设定TS‑RBF模糊神经网络参数初始值,利用训练集的样本对TS‑RBF模糊神经网络进行训练,进行结构、参数学习;(6)利用验证集对训练好的TS‑RBF模糊神经网络进行验证及模型选择;(7)将测试集输入训练好的TS‑RBF模糊神经网络中,其结果作为对模型的最终评价。 | ||
搜索关键词: | 一种 应用于 红外 火焰 识别 组织 ts 模糊 网络 建模 方法 | ||
【主权项】:
1.一种应用于红外火焰识别的自组织TS型模糊网络建模方法,其特征在于,包括如下步骤:(1)采集不同火焰、干扰源的时域信号数据,并对时域信号数据进行预处理,得到频域信号数据;(2)对波形的时域、频域信号数据进行特征信息的提取,获得火焰的特征向量,组成样本集;(3)将样本集划分为训练集、验证集和测试集;(4)搭建TS‑RBF模糊神经网络;(5)设定TS‑RBF模糊神经网络参数初始值,利用训练集的样本对TS‑RBF模糊神经网络进行训练,进行结构、参数学习;(6)利用验证集对训练好的TS‑RBF模糊神经网络进行验证及模型选择;(7)将测试集输入训练好的TS‑RBF模糊神经网络中,其结果作为对模型的最终评价。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江南大学,未经江南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811080145.1/,转载请声明来源钻瓜专利网。