[发明专利]一种基于自适应k-means++算法的负荷特性分析方法有效

专利信息
申请号: 201811088277.9 申请日: 2018-09-18
公开(公告)号: CN109657891B 公开(公告)日: 2022-11-25
发明(设计)人: 李婧;万灿;李植鹏;徐胜蓝;肖明;谢莹华;候惠勇;郑睿敏 申请(专利权)人: 深圳供电局有限公司;浙江大学;深圳供电规划设计院有限公司
主分类号: G06Q10/06 分类号: G06Q10/06;G06K9/62;G06Q50/06
代理公司: 深圳汇智容达专利商标事务所(普通合伙) 44238 代理人: 潘中毅;熊贤卿
地址: 518000 广东省深圳市*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于自适应k‑means++算法的负荷特性分析方法,其包括如下步骤:步骤S10、采集电网需求侧用户的日负荷曲线;步骤S12、对数据进行预处理,筛选出有效的数据记录并进行归一化处理;步骤S14、设定不同聚类数,采用k‑means++算法对日负荷曲线进行聚类,综合不同聚类数时的聚类结果,构建判断矩阵;步骤S16、对判断矩阵对应的加权邻接图迭代进行图切分,获得日负荷曲线数据集的最佳聚类数;步骤S18、以步骤S16所获得的最佳聚类数,采用k‑means++算法对日负荷曲线进行聚类。实施本发明,可以,可以确定最佳聚类数,并获得较优的聚类结果。
搜索关键词: 一种 基于 自适应 means 算法 负荷 特性 分析 方法
【主权项】:
1.一种基于自适应k‑means++算法的负荷特性分析方法,其特征在于,包括如下步骤:步骤S10、采集电网需求侧用户的日负荷曲线;步骤S12、对数据进行预处理,筛选出有效的数据记录并进行归一化处理;步骤S14、设定不同聚类数,采用k‑means++算法对日负荷曲线进行聚类,综合不同聚类数时的聚类结果,构建判断矩阵;步骤S16、对判断矩阵对应的加权邻接图迭代进行图切分,获得日负荷曲线数据集的最佳聚类数;步骤S18、以步骤S16所获得的最佳聚类数,采用k‑means++算法对日负荷曲线进行聚类。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳供电局有限公司;浙江大学;深圳供电规划设计院有限公司,未经深圳供电局有限公司;浙江大学;深圳供电规划设计院有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201811088277.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top