[发明专利]一种基于改进的卷积神经网络的鸟类识别方法有效

专利信息
申请号: 201811091554.1 申请日: 2018-09-18
公开(公告)号: CN109460774B 公开(公告)日: 2022-04-22
发明(设计)人: 邹腊梅;熊紫华;张松伟;李长峰;李晓光;陈婷;杨卫东 申请(专利权)人: 华中科技大学
主分类号: G06V10/774 分类号: G06V10/774;G06V10/82;G06K9/62;G06N3/04
代理公司: 华中科技大学专利中心 42201 代理人: 李智;曹葆青
地址: 430074 湖北*** 国省代码: 湖北;42
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于改进的卷积神经网络的鸟类识别方法,包括:利用鸟类识别器对待识别的鸟类图像进行识别,得到待识别的鸟类图像的鸟类类别;所述鸟类识别器的训练包括:构建样本鸟类图像的数据集;在卷积神经网络的ResNet50输入层之后增加BN层,在5层卷积层之后增加2层卷积层,在FC层之前增加Dropout层,得到改进的卷积神经网络;利用样本鸟类图像的数据集训练改进的卷积神经网络,得到鸟类识别器。本发明基于迁移学习的思想,对卷积神经网络进行改进,将其应用在鸟类属性识别上,在样本量有限的前提下,获得了比改进之前的网络更好的结果。
搜索关键词: 一种 基于 改进 卷积 神经网络 鸟类 识别 方法
【主权项】:
1.一种基于改进的卷积神经网络的鸟类识别方法,其特征在于,包括:利用鸟类识别器对待识别的鸟类图像进行识别,得到待识别的鸟类图像的鸟类类别;所述鸟类识别器的训练包括:(1)构建样本鸟类图像的数据集;(2)在卷积神经网络的ResNet50输入层之后增加BN层,在5层卷积层之后增加2层卷积层,在FC层之前增加Dropout层,得到改进的卷积神经网络;(3)利用样本鸟类图像的数据集训练改进的卷积神经网络,得到鸟类识别器。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华中科技大学,未经华中科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201811091554.1/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top