[发明专利]一种基于改进的卷积神经网络的鸟类识别方法有效
申请号: | 201811091554.1 | 申请日: | 2018-09-18 |
公开(公告)号: | CN109460774B | 公开(公告)日: | 2022-04-22 |
发明(设计)人: | 邹腊梅;熊紫华;张松伟;李长峰;李晓光;陈婷;杨卫东 | 申请(专利权)人: | 华中科技大学 |
主分类号: | G06V10/774 | 分类号: | G06V10/774;G06V10/82;G06K9/62;G06N3/04 |
代理公司: | 华中科技大学专利中心 42201 | 代理人: | 李智;曹葆青 |
地址: | 430074 湖北*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于改进的卷积神经网络的鸟类识别方法,包括:利用鸟类识别器对待识别的鸟类图像进行识别,得到待识别的鸟类图像的鸟类类别;所述鸟类识别器的训练包括:构建样本鸟类图像的数据集;在卷积神经网络的ResNet50输入层之后增加BN层,在5层卷积层之后增加2层卷积层,在FC层之前增加Dropout层,得到改进的卷积神经网络;利用样本鸟类图像的数据集训练改进的卷积神经网络,得到鸟类识别器。本发明基于迁移学习的思想,对卷积神经网络进行改进,将其应用在鸟类属性识别上,在样本量有限的前提下,获得了比改进之前的网络更好的结果。 | ||
搜索关键词: | 一种 基于 改进 卷积 神经网络 鸟类 识别 方法 | ||
【主权项】:
1.一种基于改进的卷积神经网络的鸟类识别方法,其特征在于,包括:利用鸟类识别器对待识别的鸟类图像进行识别,得到待识别的鸟类图像的鸟类类别;所述鸟类识别器的训练包括:(1)构建样本鸟类图像的数据集;(2)在卷积神经网络的ResNet50输入层之后增加BN层,在5层卷积层之后增加2层卷积层,在FC层之前增加Dropout层,得到改进的卷积神经网络;(3)利用样本鸟类图像的数据集训练改进的卷积神经网络,得到鸟类识别器。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华中科技大学,未经华中科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811091554.1/,转载请声明来源钻瓜专利网。