[发明专利]一种基于CFAR与Fast-RCNN融合的SAR图像舰船目标检测方法有效
申请号: | 201811103023.X | 申请日: | 2018-09-20 |
公开(公告)号: | CN109145872B | 公开(公告)日: | 2021-08-13 |
发明(设计)人: | 杨小婷;何向晨;李洪鹏;房嘉奇 | 申请(专利权)人: | 北京遥感设备研究所 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/40;G06N3/04 |
代理公司: | 中国航天科工集团公司专利中心 11024 | 代理人: | 葛鹏 |
地址: | 100854*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于CFAR与Fast‑RCNN融合的SAR图像舰船目标检测方法。该方法基于Fast‑RCNN目标检测框架,利用SAR图像中舰船目标亮度高于背景这一显著特征,首先通过CFAR算法获得疑似目标点,然后基于多组结构元素进行形态学滤波得到候选建议框,在缩减候选区域数量提升算法效率的同时还保证了建议框的有效性,克服了采用单一滤波因子组带来的同一目标被分为多个部分,以及相近的目标被误认为同一目标的不足;在提取的候选建议框的基础上完成Fast‑RCNN网络模型的训练,并基于所得模型实现对任意输入图像的目标分类以及标定框回归,通过采用CNN特征提取网络克服了人工特征提取的不足,并提高了数据利用率。 | ||
搜索关键词: | 一种 基于 cfar fast rcnn 融合 sar 图像 舰船 目标 检测 方法 | ||
【主权项】:
1.一种基于CFAR与Fast‑RCNN融合的SAR图像舰船目标检测方法,其特征在于,包括如下步骤:(1)候选建议框提取:通过CFAR算法获得原图像的疑似目标点,对疑似目标点进行多结构元素组合的形态学滤波处理,得到候选区域,最后生成候选建议框;(2)Fast‑RCNN网络训练:对步骤(1)中得到的候选建议框进行Fast‑RCNN网络训练,得到Fast‑RCNN网络模型;(3)基于Fast‑RCNN网络模型的目标检测:对任意输入图片采用步骤(1)方法获取候选建议框;同时将其输入步骤(2)训练好的网络模型得到特征图;根据候选建议框到特征图的映射关系,在特征图中找到每个候选建议框对应的特征框,并在RoI池化层中将每个特征框池化到一定尺寸,经全连接层得到特征框的特征向量,再将该特征向量经全连接层,得到softmax的二分类得分输出向量和标定框窗口的修正偏移量输出向量;剔除类别得分低于阈值的舰船检测窗口,并对剩余的舰船检测窗口进行非极大值抑制,剔除重叠建议框,最终得到经回归修正后的舰船检测窗口。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京遥感设备研究所,未经北京遥感设备研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811103023.X/,转载请声明来源钻瓜专利网。