[发明专利]一种融合自适应相似度和贝叶斯框架的图像检索方法有效
申请号: | 201811104365.3 | 申请日: | 2018-09-21 |
公开(公告)号: | CN109522432B | 公开(公告)日: | 2023-01-31 |
发明(设计)人: | 冯永;乐艺泽;尚家兴;强宝华 | 申请(专利权)人: | 重庆大学;桂林电子科技大学 |
主分类号: | G06F16/53 | 分类号: | G06F16/53;G06N3/08 |
代理公司: | 重庆市前沿专利事务所(普通合伙) 50211 | 代理人: | 郭云 |
地址: | 400044 *** | 国省代码: | 重庆;50 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及图像检索技术领域,公开了一种融合自适应相似度和贝叶斯框架的图像检索方法,包括以下步骤:S1:构建相似度矩阵和标识矩阵;S2:通过构建深度哈希神经网络模型从而将图像转换为近似哈希向量;S3:构建融合贝叶斯框架的损失函数;S4:通过构建相似度更新幅度模型实现图像相似度的调整;S5:对构建的深度哈希神经网络模型进行训练;S6:构建图像的哈希向量数据库;S7:将需检索图像的哈希向量与构建的哈希向量数据库进行比对,以找出相似的图像。通过本发明可提高图像的检索速度和精度。 | ||
搜索关键词: | 一种 融合 自适应 相似 贝叶斯 框架 图像 检索 方法 | ||
【主权项】:
1.一种融合自适应相似度和贝叶斯框架的图像检索方法,其特征在于,包括以下步骤:S1:构建相似度矩阵和标识矩阵;S2:通过构建深度哈希神经网络模型从而将图像转换为近似哈希向量;S3:构建融合贝叶斯框架的损失函数;S4:通过构建相似度更新幅度模型实现图像相似度的调整;S5:对构建的深度哈希神经网络模型进行训练;S6:构建图像的哈希向量数据库;S7:将需检索图像的哈希向量与构建的哈希向量数据库进行比对,用于找出相似的图像。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆大学;桂林电子科技大学,未经重庆大学;桂林电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811104365.3/,转载请声明来源钻瓜专利网。