[发明专利]一种基于Lyapunov优化的雾计算动态卸载方法有效

专利信息
申请号: 201811134763.X 申请日: 2018-09-28
公开(公告)号: CN109343904B 公开(公告)日: 2021-12-10
发明(设计)人: 郭希娟;刘立卿;陈军;刘佳乐;王博伦;常征 申请(专利权)人: 燕山大学
主分类号: G06F9/445 分类号: G06F9/445;G06F9/50
代理公司: 北京挺立专利事务所(普通合伙) 11265 代理人: 刘阳
地址: 066004 河北省*** 国省代码: 河北;13
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提出了一种基于优化的雾计算动态卸载方法,属于无线网络通信领域。本发明将计算请求分为局部计算部分和雾计算部分。通过将计算密集型的请求卸载到雾节点,可以显著提高应用程序的性能。利用一种基于Lyapunov优化的在线联合无线电和计算资源算法,推导了Lyapunov偏移惩罚函数的上界。通过从不同决策变量的角度最小化上界。利用凸优化方法,得到局部处理器的最优CPU周期频率。利用预定义的卸载优先函数,得出最优子信道的最优传输功率。而在雾节点上,通过反证法证明,获得最优请求调度决策。
搜索关键词: 一种 基于 lyapunov 优化 计算 动态 卸载 方法
【主权项】:
1.一种基于Lyapunov优化的雾计算动态卸载方法,主要设备包括移动设备、接入节点、雾节点、雾服务器,其特征在于,所述方法包括以下步骤:步骤1:移动设备执行密集型计算应用并且产生一系列计算服务请求任务;步骤2:移动设备将步骤1中部分计算请求任务通过接入接点卸载到雾服务器上;步骤3:建立雾服务器计算服务请求任务分配模型:在时间段t,移动设备i计算请求数量Di,o(t),每个移动设备请求雾节点缓存区的队列长度T(t)=max{T1(t),...,Ti(t),...,TN(t)},Ti(t)是移动设备i的请求队列长度,确定该分配模型雾节点的平均能耗基于该分配模型的总决策V(t)=[f(t),ρ(t),pup(t),Df(t),fs(t)]对平均能耗进行最小化,其中,f(t)=[f1(t),...,fi(t),...,fN(t)]为每个移动设备在时间段t内的CPU周期频率;ρ(t)=[ρ1(t),...,ρi(t),...,ρN(t)]表示所有的移动设备在时间段t内的子信道分配矩阵,其中ρi(t)=[ρi,1(t),...,ρi,k(t),...,ρi,K(t)]表示移动设备i在时间段t上的子信道分配向量;pup(t)=[p1(t),...,pi(t),...,pN(t)]表示为所有的移动设备在时间段t上的上行链路传输功率矩阵,其中pi(t)=[pi,1(t),...,pi,k(t),...,pi,K(t)]表示为移动设备i在时间段t子信道的传输功率的集合;Df(t)=[Df,1(t),...,Df,i(t),...,Df,N(t)]表示每个移动设备在时间段t内的雾计算的请求数量;fs(t)表示每个雾服务器的CPU周期频率;步骤4:集成雾服务器的雾节点依据步骤3中的分配模型对步骤2卸载的计算服务请求任务进行分配;步骤5:基于Lyapunon函数获取移动设备和雾节点的请求缓存区Ω(t)=(Q(t),T(t)),其中Q(t)为移动设备请求缓存的队列长度;基于平均能耗进行最小化对步骤4分配过程中的总决策进行求解,获取基于Lyapunov优化的雾计算动态卸载方法的最佳总决策
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于燕山大学,未经燕山大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201811134763.X/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top